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Abstract

Recent advances in sequencing and genotyping technologies have caused
an explosion in the availability of DNA data. Recent studies have been
concerned with characterising patterns of diversity and measuring variation
within populations. Understanding these data will require new methodolo-
gies which consider the biological and evolutionary processes that underly
the data.

The evolution of DNA is a complex and highly random process and as
a result the information contained in our DNA sequences about quantities
of interest is difficult to extract. Statistical models provide a framework
in which to understand these data. However it is extremely challenging to
produce models that capture the critical features of the underlying processes
while retaining the simplicity required to perform inference.

The coalescent, introduced by Kingman [1], provides a model of the ge-
nealogical process under which simulation of ancestral relationships is straight-
forward; this was extended to include recombination by Hudson [2]. The co-
alescent model captures many of the important features of the evolutionary
process and has become widely used in population genetics. Unfortunately
it is difficult to perform inference under the coalescent: the high dimensional
space of genealogies is difficult to explore and when recombination is present
the data does not fully inform these ancestral relationships between individ-
uals.

In this thesis I explore approximations to the coalescent under which in-
ference may be more tractable. I investigate models which greatly simplify
the ancestral process and provide very efficient computational means of per-
forming inference; I also investigate a new model, the Sequentially Markov
Coalescent, which closely mimics the coalescent with recombination.

Using these approximations provides an interesting alternative to full coa-
lescent inference although there may well be considerable improvements that
can still be made. I conclude by describing possible approaches to creating
new approximate models that capture more of the biological reality of the
ancestral process while retaining computational efficiency.
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Chapter 1

Introduction

Genetic data provides a rich source of information about organisms. Our
DNA contains clues to age old questions concerning human history, human
origins, and the differences between humans and other animals. There is also
information about important medical phenomena, such as the co-evolution
of host-parasite systems and locations of genes involved in diseases with her-
itable components. It is therefore important to develop methods which can
extract useful information from our DNA sequences. Unfortunately the DNA
of organisms is affected by highly complex random processes and the result-
ing signals for quantities of interest are often difficult to extract. Statistical
modelling provides a general tool for understanding the patterns of variation
that we observe.

In this thesis I introduce some statistical models that have proved suc-
cessful in performing population genetic inference. I explore both complex
genealogical models under which inference is extremely challenging as well
as simpler models under which inference is computationally feasible, even for
large data sets. One class of models that has proved useful in many statistical
scenarios is that of Markov models and of Hidden Markov Models (HMMs).
Hidden Markov models are used extensively in this thesis, in particular in
Chapter 2 and as a key component of methods in Chapter 4. In the cur-
rent Chapter I introduce Markov processes and the basic theory of Hidden
Markov Models. I start with a simple example of a Hidden Markov Model
and use this to explain how it can be used to perform efficient and powerful
inference. I then describe some further applications and scenarios where Hid-
den Markov Models have been successfully used to help understand genetic
data.

I also introduce a model for the genealogy of a population sample of ge-
netic data, the coalescent with recombination [1, 2]. The coalescent provides
a prior distribution on genealogies for a sample of size n and allows the ef-
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ficient simulation of such genealogies and of population genetic data under
certain simplifying assumptions about demography and the mutation and
recombination processes. At the end of this Chapter I ask how inference can
be performed under the coalescent and explain some of the difficulties with
full genealogical inference.

1.1 Markov Processes

Given an ordered sequence of random variables, X1, . . . , XL, we say that the
the Xi form a Markov chain if

P (Xi+1 | X1, . . . , Xi) = P (Xi+1 | Xi) (1.1)

For an in depth discussion of Markov chains and their properties see, for
example, Grimmet and Stirzaker [3]. A simple example of a Markov chain
is the allelic state of a particular locus on the genome. The type in any
individual is determined by the types of its ancestors back in time. However,
given the types of the parents and the mutation and recombination rates,
the distribution of types is independent of earlier ancestors.

Consider a single locus, l, on the genome of a simple idealised bacterium
b1. Imagine that every 20 minutes the DNA in the bacterium is replicated and
a second bacterium splits from the first. Assume that after each replication
the bacterium that retained the original DNA dies. After t generations a very
simple lineage of individual bacteria, (b1, . . . , bt), has been generated. Assume
that there are four possible allelic states at a locus, A, C, G and T and notice
that mutation events at locus l give rise to a Markov Chain X1, . . . , Xt of
random variables representing the type (at l) in each generation.

It is now possible to construct a matrix, T (i), to describe the pattern of
mutations in generation i in the following way. If the allelic state of bi, Xi,
is j then the distribution of possible states in generation i + 1 given state Xi

in i is denoted by a vector T (i)(j). As these are the only possibilities for the
states in generation i + 1 the elements of T (i)(j) sum to 1. These transition
vectors can then be collected into a matrix T (i), called the transition matrix.
When the transition matrix is independent of i the Markov chain is said to
be homogeneous.

Suppose that rate of mutation between bacterial replications does not
change in time. Dropping the, now redundant, conditioning on i define the
elements of T , T (j → j′), as the transition rate from state j in any generation
to state j′ at the next. The transition matrix allows simple calculation of
the distribution of allelic states after one generation. Given a row vector, vi,
of probabilities (describing knowledge of the allelic states of the bacterium
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in generation i) then right multiplication by the transition matrix gives the
correct row vector of probabilities in generation i + 1. Similarly, right mul-
tiplication by T on the vector of probabilities for generation i + 1 gives the
distribution of states in generation i+2. This pair of right multiplications is
equivalent to a single multiplication by the square of the transition matrix.
More generally

P (Xn = j | vi) = [vi × T n−i]j (1.2)

The theory of Markov chains allows many efficient computations such as
that described above, however that is not the focus of this chapter. The next
section describes the situation where there is an underlying Markov process,
but this process cannot be directly observed.

1.2 Hidden Markov Models

Sometimes the observable data are not Markov but it is possible to construct
Markov models for the underlying processes. A model which is Markov on
these hidden states is referred to as a Hidden Markov Model. Examples are
given in the following sections, but I first introduce the notation and basic
mathematics of Hidden Markov Models.

Consider a Markov Chain X = X1, . . . , XL Suppose that the Xi’s can-
not be observed, and that only the sequence D = O = O1, . . . , OL (these
are emitted by the underlying states) are observed. Define the ith emission
probability, E(i)(oi, xi) by

E(i)(oi, xi) = P (Oi = oi | Xi = xi) ∀(xi ≤ K), (i ≤ L). (1.3)

These can then be collected into a K by L matrix, E . Note that then the
probability of each observed datum is dependent only on the underlying state
at the same point. This comprises a Hidden Markov Model: a set of possible
underlying states Xi, transition rates between the Xi (given by T ) and a set
of emission probabilities (given by E).

Assuming that the emission and transition rates of a given Hidden Markov
Model are known it is then possible to give a straightforward (albeit compu-
tationally intensive) method of calculating the probability of a set of obser-
vations given these parameters. Using the partition rule:

P (O = o) =
∑

x

P (O = o,X = x) (1.4)

To calculate each of the terms on the right hand side it is often helpful to
break the likelihood for each path into a product over each step in the path.
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Consider a possible sequence of underlying states, X = x:

P (O = o,X = x)

= P ((O1, . . . , OL) = (o1, . . . , oL), (X1, . . . , XL) = (x1, . . . , xL))

= P (O1 = o1 | X1 = x1)P (X1 = x1) ×
L∏

i=2

P (Oi = oi | Xi = xi)P (Xi = xi | Xi−1 = xi−1)

= E(1)(o1, x1)T (x1) ×
L∏

i=2

E(i)(oi, xi)T (xi−1, xi) (1.5)

where T (x1) denotes the probability that the Markov Chain starts in state
x1.

I now introduce an example Hidden Markov Model and some techniques
that can be employed to perform computationally efficient inference using
Hidden Markov Models.

1.3 Inferring Population of Origin in Admixed

Populations

When a population has recently been derived from the mixing of two previ-
ously isolated populations the population is said to be admixed. For example,
individuals of both African and European descent have mixed in the Amer-
icas giving rise to individuals with both recent African as well as European
ancestry.

Given such a population it may be useful to infer the population of origin
along the genome of extant individuals. Models for performing inference
on admixed populations using unlinked markers were developed in 2000 by
Pritchard et. al.[4]. In 2003 Falush et. al. [5] described an extension to this
model designed for data from linked loci.

The model attempts to capture the following (simplified) scenario. A set,
X (with |X| = K), of ancestral populations have been genetically separated
for enough time for genetic drift and other forces to create significant differ-
ences in allele frequencies. At some recent point in the past, ta generations
ago, these populations mixed giving rise to random mating between individ-
uals within this mixed population. Since admixture, recombination events
have broken up ancestral haplotypes giving rise to individuals with contigu-
ous stretches of genetic material from each population - with the boundaries
of such material lying at the positions of historical recombination events.
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These breaks between ancestral chunks occur at a Poisson rate of 1 per Mor-
gan in each generation. So after ta generations the breaks between chunks
have a Poisson distribution with ta breaks expected per Morgan.

Formally, consider n individuals sampled at random from the admixed
population and typed at L loci and suppose that it is possible to obtain
haplotype data. Denote the probability that individual i has directly inher-
ited ancestral material from population k at locus j by P (X

(i)
j = k). Let

q
(i)
k denote the average expected proportion of ancestry from population k in

individual i. The transition rate between state k at site j and state k′ at site
j + 1 is denoted by T j

k→k′(rdj). Then, where r is the recombination rate per
unit distance since the start of admixture and dj is the (physical) distance
between sites j and j + 1,

T j
k→k′(rdj)

=

{
exp(−rdj) + (1 − exp(−rdj))q

(i)
k′ if k′ = k

(1 − exp(−rdj))q
(i)
k′ otherwise.

(1.6)

The term exp(−djr) captures the probability of no recombination events
between loci j and j + 1 while the term (1 − exp(−djr)) is the probability
of at least one such recombination. In the former case ancestry at site j + 1
is guaranteed to match that at site j while in the latter case the population
of ancestry is chosen according to the population frequencies. I now drop
explicit conditioning on i for notational simplicity and as the following theory
pertains to general Hidden Markov Models.

Note that the model of recombination described above is a first order
Markov Chain. The ancestry at each site depends only on the ancestry at
the last site (in that individual). However, the ancestral states themselves
are not directly observed. Instead the alleles at each locus are observed and
do not form a Markov chain. Given the population of origin the probability
of observing a particular allele is the population frequency of that allele.
This model of admixture can then be phrased in terms of a standard Hidden
Markov Model from section 1.2. The underlying states are the unknown
ancestral populations, while the observed states are the alleles at each locus.
The transition rate between pairs of sites is defined by the recombination
fraction (this chain is not homogeneous, the transition rates depend on the
genetic distance between sites, and this is different for each pair of sites).
The emission matrix is defined by the population frequencies in the ancestral
populations.

Given the sequences of a set of individuals in an admixed population it
may be interesting to ask, in each individual, which population of ancestry
their DNA is derived from at each site. Using equation 1.5 it is possible to
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work out the joint probability of the data and a path. Then, using Bayes’
Rule, the probability of a given underlying sequence given the data (this
could then be used to calculate the most likely sequence of underlying states,
for example) can be calculated

P (x | D) =
P (D,x)∑
x P (D,x)

. (1.7)

Calculating the likelihoods for each possible sequence of ancestral states re-
quires a sum over KL possibilities. However, it is possible to use the Markov
structure of the underlying states to construct an efficient algorithm that
finds the most likely sequence of underlying states.

1.3.1 The Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm that finds the
global maximum likelihood sequence of underlying states in a Hidden Markov
Model. To do this it is first necessary to consider the likelihood function for
a given sequence of underlying (ancestral) states, or path, in the presence of
data.

Consider Equation 1.5. It can be seen from this that the likelihood of the
data and a specific sequence of underlying states can be written as the prod-
uct of the likelihood up to some point i and the data and hidden states after
point i. That is, in calculating the likelihood for sites i+1 to L, information
about the hidden states at sites i or earlier is not required. Näıvely we would
like to directly use this equation to recursively derive the most likely sequence
of underlying states site by site, by maximising the terms in this product.
This would provide an algorithm linear in the length of the data. Unfortu-
nately, a direct implementation is not optimal as the likelihood calculations
at each site require knowledge of the underlying states at the previous site.
Instead, the Viterbi algorithm is used, this recursively calculates the most
likely path conditional on the underlying state at each site (see Figure 1.1).

Denote the probability of the most likely sequence of underlying states
that ends in state k at site j in individual i by P ∗

i (k, j). Then

P ∗
i (k′, j + 1) =

K
max
k=1

(P ∗
i (k, j)T (k, k′)) × E(j + 1 | k′). (1.8)

Normally the likelihood of the most likely path itself is not of interest and
the sequence of underlying states (as in this case) needs to be estimated. For
this purpose a matrix, T ∗ of most likely transitions from state k at site j to
state k′ at site j + 1 is stored. That is:

T ∗
k′,j = argmaxk (P ∗

i (k, j)T (k, k′)) , (1.9)
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Figure 1.1: This diagram represents the set of possible sequences of underly-
ing ancestry when K = 2. The transition rates depend on the recombination
fraction between each site (according to Equation 1.6), although this is not
shown for notational convenience. Suppose that the most likely path to each
state is marked in red. Then if the most likely path in the data is in state
1 at site j + 1 then it must also be in state 1 at site j. This is because the
path that passes from state 2 at site j to state 1 at site j + 1 leads to a
smaller value at site j +1 and all subsequent calculations are independent of
the path taken to site j + 1. In this way, given the knowledge that the most
likely path is in state 1 at site j + 1 it can be inferred that it is also in state
1 at site j and in state 2 at site j − 1 and so on. Note that the most likely
state at site j cannot, in general, be inferred until the most likely state at
site j + 1 is known.

where ‘argmax’ denotes the underlying state k which maximises the quantity
in parenthesis. The most likely state at the final site is chosen according to:

T ∗
L = argmaxk (P ∗

i (k, L)) . (1.10)

It is then possible to trace-back the most likely sequence of underlying states
as in Figure 1.1. To summarise, suppose we know the frequencies of each al-
lele in each of the K ancestral populations, haplotype data for n individuals
and a recombination map for the regions under study. Then the Viterbi algo-
rithm allows us to efficiently calculate the most likely sequence of underlying
ancestry at every site in every individual under this model of admixture and
linkage.

1.3.2 Posterior Decoding

The Viterbi algorithm guarantees to find the globally most likely sequence
of underlying states, however, often measures of uncertainty in estimates or
even the full posterior distribution of underlying states are required. In the
case of admixture it may be important to know in which regions ancestry is
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well defined and where there is little certainty about the parent population.
Perhaps an ideal answer would be to give the full posterior probability of
each locus in each individual being derived from each of the K populations.
The following section describes how this can be achieved.

The Forward Algorithm The forward algorithm is an efficient algo-
rithm for calculating the likelihood of a set of data under a Hidden Markov
Model that takes time quadratic in the number of underlying states and lin-
ear in the length of the data. This is often useful in itself, but is also the
first step in calculating the posterior distribution of underlying states.

The underlying states are viewed as missing data, using the partition
law it is then possible to write an expression for the likelihood, this involves
summing over all possible sequences of underlying states,

P (D) =
∑

x∈X

P (D | X = x)P (x) (1.11)

where X denotes the set of all possible underlying sequences X. However, for
K states and data of length L a direct calculation of the quantity requires
a sum over KL terms which is, of course, impractical for most data sets of
interest.

Instead of a straightforward sum over all paths, it is preferable to use
the forward algorithm. This calculates the sum over all paths so that the
time taken is linear in the length of the data. Define Pi(k, j) to be the joint
probability of the data for individual i when only using the data up to site
j, with underlying state k at j. Then

Pi(k, j + 1) = E(j+1)(oj+1, k) ×
K∑

k′=1

Pi(k
′, j)Tk′,k. (1.12)

These terms are recursively calculated for all j ≤ L and the probability
of the data, for each individual, is given by

∑K
k=1 Pi(k, L). Individuals are

assumed to be independent so the likelihood of the data is the product of
these likelihoods for each individual. Note the similarity between equations
1.8 and 1.12. The reasoning behind both is precisely the same, but the
forward algorithm calculates the probability summed over all paths, instead
of finding the maximum likelihood path.

The Backwards Algorithm The backwards algorithm does not have
such an intuitive interpretation as those of the forward and Viterbi algo-
rithms. Informally the backward algorithm performs exactly the same cal-
culations as the forwards algorithm, but in a different order. More formally,
denote the value of the backwards algorithm for individual i at site j in state
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Figure 1.2: This diagram gives a pictorial representation of how the forward
and backward algorithms can be combined to produce the probability of the
data given state k at site j. The terms preceding site j, calculated by the
forward algorithm calculate the probability of the data using only information
up to site j. Also, the contribution from state 2 at this site is not included.
When the product with the result from the backwards calculation is taken
the set of transition and emission probabilities in constructing this value
correspond precisely to those that would be subsequently calculated by the
forward algorithm if it continued past site j but did not include terms from
state 2 at this point.

k by Bi(k, j). Then define Bi(k, L) = 1, ∀k and

Bi(k
′, j − 1) =

K∑

k=1

Bi(k, j)Tk′,k × E(Oj | Xj = k) (1.13)

Note then that

P (D) =
K∑

k=1

Pi(k, j) × Bi(k, j), ∀j. (1.14)

The backward algorithm greatly increases the range of questions that can
be asked of the data, such as: what is the joint probability of the data with
state k at site j? To answer this question it is necessary to calculate the
backwards quantity to site j in state k and the forwards quantity to site j in
state k. The product of these terms gives the probability of the data given
state k at site j. That is:

P (D,Xj = k) = Pi(k, j) × Bi(k, j). (1.15)

This may be easiest to understand by considering Figure 1.2.
Suppose we now want to know the quantity P (Xj = k | D), this can be

calculated exactly (under the model) by using Equation 1.15 in conjunction
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with Bayes’ rule:

P (Xj = k | D) = P (D | Xj = k)P (Xj = k)/P (D)

= P (D,Xj = k)/P (D). (1.16)

This procedure is highly efficient as it is necessary to perform the forward
and backward algorithms only once each. Then the above equation allows
the straightforward calculation of the vector of all posterior probabilities.

This calculation was performed on high quality human data by Patterson
et. al. [6] producing Figure 1.3

1.4 The Lander and Green Hidden Markov

Model

In 1987 Lander and Green [8] published a paper introducing one of the first
Hidden Markov Models to genetics. The problem concerns constructing a
linkage map based on pedigree data. Unlike in the case of admixture map-
ping above much of the family structure of the individuals in the sample is
known here. The information about recombination is gleaned from inferring
specific switches between maternally and paternally inherited loci in a sin-
gle individual. The recombination fraction is then simply calculated as the
expected number of switches inferred at each site.

At each site on each of an individual’s haploid chromosomes it is impor-
tant to know whether the site was maternally or paternally derived. Given
this information it is then possible to observe recombination events (see Fig-
ure 1.4). However, it is not always possible to distinguish between the mater-
nal and paternal types at each locus. Often the type donated to the child is
present in both parents, also genetic data does not include information about
the phase of the genotype. Not knowing which type each individual parent
had, or which type has been passed to the child can make it impossible to
infer recombinations even when the full haplotype data are informative (see
Figure 1.5).

Lander and Green introduced a Hidden Markov Model for these unknown
patterns of inheritance (given the recombination fractions). Their algorithm
for inferring recombination fractions combined this Hidden Markov Model
with the expectation maximising (EM) algorithm which iteratively proposes
new recombination fractions based on the inferred ancestry given the previous
set of proposed fractions. This approach allowed the computation to be
completed in a short period of time when the pedigree is of small size, even
for large numbers of loci. I now consider the problem of calculating the
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Figure 1.3: This Figure comes from Patterson et. al. [6] and shows the
posterior probability of ancestry from the African and European founder
populations. The data here is diploid and so there are 3 cases - homozygous
for African inheritance, homozygous for European or heterozygous. The
data comes from Smith et al [7] and the ancestry is derived from 52 SNPs on
chromosome 22. The blue dotted line indicates the posterior probability of no
European Ancestry alleles at this locus. The green line shows the probability
of one allele of European origin while the red line gives the probability that
both alleles are of African Origin.
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Figure 1.4: In this mock data set the sequences of coloured boxes represent
haplotypes, the colours indicate different types. On the left is the paternal
chromosome and on the right is the maternal chromosome. If the progeny are
observed to have the haplotype displayed underneath then a recombination
between the first and second sites can be inferred as the inherited material
is paternal to the left of this site and maternal to the right. In most studies
there would be many triples, achieved both by typing multiple generations
as well as many pairs in each generation.

expected number of recombinations given (unphased) genotype data and a
vector of recombination fractions. This is a required step in performing the
EM algorithm. In their paper [8] Lander and Green use a compact matrix
notation to describe the dynamic programming algorithms. I attempt to
rewrite the algorithm in the same style as the models described above.

Consider a set of n genotyped individuals with parents who have also been
genotyped; such individuals are referred to as non-originals in the Lander and
Green paper. It is only in these individuals, that have parents in the sample,
that recombination events can be inferred. Each individual is typed at L loci
in between which are L− 1 points at which recombination events could have
occurred. The recombination fraction between two sites is the probability
of inheriting the genetic information at these sites from different parents in
a single generation. Let r = {r1, . . . , rL−1} be the vector of recombination
fractions between each pair of adjacent sites. Throughout this description I
index sites by the letter j and individuals by the letter i. For each site define
a binary vector vj (of length 2n) which denotes the inheritance of individual
i at site j by vi,j = 0 if the gamete inherited its DNA from the parent’s
paternal chromosome and vi,j = 1 otherwise.

In the pedigree, some individuals will be both children and parents of
other individuals in the pedigree. For this reason, the paternities at each site
are non-independent. Although it would be simpler and faster to take each
individual separately this non-independence makes it necessary to consider
the vectors vj as a whole, these are the underlying states at each site. The
transition rates are independent between individuals and the prior probability
of a transition between any two adjacent sites, j and j + 1, in any individual
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Figure 1.5: In the above diagram there are two parents and two offspring,
all typed at two loci. On the left is the paternal parent and the right is the
maternal. In this diagram the paternal parent donates the material for the
lower of the two sequences and the maternal to the higher. Given child C1

(left) no recombination need be inferred as the maternal contribution comes
from one chromosome in the mother, likewise with the paternal contribution.
However, for child C2 recombination is required as both the maternal con-
tributions and the paternal contributions are recombinant. Without phasing
information the difference between C1 and C2 is invisible. Both parents have
genotypes {1, 1} and both children have genotypes {2, 1}.

is precisely the recombination fraction rj. There are 22n possible inheritance
vectors at any given site and so the formal transition matrix between each
site is of size 22n by 22n. For a given pair of sites, j and j + 1, the transition
probability between inheritance vectors vj = a and vj+1 = b is denoted by

ta,b
j and is the product of the individual transition rates in each individual.

This leads to the simple formulation that, where d denotes the number of
parental differences between a and b,

t
(a,b)
j = rd

j × (1 − rj)
2n−d (1.17)

Denote the emission probabilities given that vj = a by qj,a so that

qj,a = P (Dj | vj = a) (1.18)

Where P (Dj) refers to the probability of the genotypes (at site j) in the
non-originals conditional on the types of the individuals with no parents in
the sample. Note that it is straightforward to calculate the probability of
observing each child’s genotype conditional on the inheritance vectors and
phase of the parents. Given probabilities for each phase it is then possible
to calculate the likelihood for each child as a sum over all possible phases.
Note that by phase I mean here that for each site it is known whether it
was maternally or paternally derived - not simply which pairs of sites are
inherited from the same individual.
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It is now possible to use the forward and backward algorithms to calculate
the probabilities pj,a of underlying state a at site j. The forward algorithm
recursively describes the joint probability of the data up to site j + 1 with
underlying state vj+1 = b in the standard way:

P (Dj+1 | vj+1 = b) = qj+1,b

∑

a

P (Dj | vj = a)ta,b
j . (1.19)

For shorthand denote P (Dj | vj = a) by F (vj = a). The ‘backward’ quanti-
ties at each site, B(vj = b) are then calculated by defining B(vL = b) = 1, ∀b
and recursively calculating

B(vj = a) =
∑

b

B(vj+1 = b)ta,b
j qj+1,b. (1.20)

This then gives

pj,a =
F (vj = a) × B(vj = a)

P (D)
(1.21)

where P (D) is calculated by
∑

a F (vL = a).
To calculate the expected number of recombinations between each pair of

sites requires a a further dynamic programming step. Note that, in general,
the expectation of a discrete random variable, X, is simply:

E(X) =
∞∑

i=0

P (X = i)i (1.22)

With this in mind define d(a, b) to be the number of parental switches between
configurations a and b. Then the expected number of recombinations between
sites j and j + 1 is

E(Rj,j+1) =

∑
a,b F (vj = a) × B(vj+1 = b)qj+1,b × ta,b

j d(a, b)

P (D)
. (1.23)

Informally this is the probability of the data and state a at site j, and state
b at site j +1 divided by the unconditional probability of the data (which by
Bayes rule is the probability of those underlying states given the data). This
is then multiplied by the number of recombinations given this transition and
summed over all possible underlying states to produce the expected number
of recombination events in this interval.

Lander and Green use the EM algorithm to explore the space of possible
recombination fractions. In this case the procedure is straightforward: Given
a set of recombination fractions rold, use the HMM to calculate the expected
number of recombinations. Set rnew as the maximum likelihood estimate of
the recombination fractions given the expected number of recombinations
(which is straightforward). This procedure is repeated until the likelihood
converges to a maximum.
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1.5 The likelihood of Data given a Genealogy

One natural method of calculating the likelihood of genetic data involves
first constructing a genealogy (or genealogies) that may have given rise to
the data and then calculating the likelihood of the data given the genealogy.
This approach might involve the calculation of a maximum likelihood tree, as
often done in phylogenetics [9]. Alternatively multiple trees might be sampled
from a probabilistic distribution usually utilising a model of ancestry and
conditioning on the data. It is therefore necessary to be able to calculate the
likelihood of the data given a genealogy (see Figure 1.6). In 1973 Felsenstein
developed a dynamic programming algorithm to perform this calculation.

The allelic states on a lineage form a Markov Chain and this leads to
a natural Hidden Markov model for the probability of genetic data given a
genealogy. The observed data is the types of each individual at each site in
the present. The hidden states are the types at internal nodes and transition
rates are defined by the mutation model. Nothing is observed at the internal
nodes so the emission probabilities are always 1 at internal nodes. At the leaf
nodes the data is directly observed and the emission probabilities are trivial
(see Equation 1.24).

Suppose we are given a tree for a given set of n sequences of L sites.
Suppose also that we have a mutation model that allows the calculation of
the probability of a transition from base a to base b in a given time t along
a single branch, P (a → b)t. It is also necessary to assume that

1. The transition rates are independent between branches on the tree

2. The transitions are independent between sites

Note that the likelihood for the whole data can be expressed as a product
of the likelihoods from each site; I now describe the method for calculating
the likelihood at a single site. Denote a node by ν and the genealogy by
G. Given a set of n types at the leaves, xν (defined only at the leaf nodes),
we wish to calculate the joint likelihood for each node and its state, s(ν).
Denote this likelihood by P (s(ν) = a | G) and note that it can be calculated
recursively according to the following scheme: If the node is a leaf node then

P (s(ν) = a | G)

=

{
1 if a = xν

0 otherwise.
(1.24)

If the node is not a leaf node then it has two daughter nodes ν1 and ν2 and
associated branch lengths t1 and t2 respectively. Then P (s(ν) = a | G) =

∑

b,c

P (s(ν1) = b | G)P (a → b)t1 × P (s(ν2) = c | G)P (a → c)t2 . (1.25)
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Figure 1.6: This diagram shows an example genealogy where calculating the
full likelihood given the genealogy involves a sum over many possible states
for the internal nodes. For example, it is not clear what the ancestral states
are at nodes 1 and 2. Just as in previous dynamic programming approaches
the trick is to calculate the joint likelihoods at each node for each possible
underlying states.

The likelihood of the data given the genealogy is then

P (D | G) =
∑

a

P (s(ν(r)) = a | G) (1.26)

where ν(r) is the root node in the tree.
In the same way as before there is an exact analogue between this method

for calculating the probability of the data given the genealogy and a method
for calculating a most likely set of underlying types at each node - the Viterbi
algorithm. Let V (s(ν) = a | G) denote the likelihood given a most likely
set of underlying states up to node ν and with state a at node ν. Then
V (s(ν) = a | G) = P (s(ν) = a | G) for all leaf nodes and if ν is not a leaf
node then V (s(ν) = a | G) =

max
b,c

V (s(ν1) = b | G)P (a → b)t1 × V (s(ν2) = c | G)P (a → c)t2 . (1.27)

In order to trace-back a most likely set of underlying states it is necessary
to record the types at each daughter node which gave rise to the highest
likelihood at each internal node conditional on each state at that node,
ν(b∗, c∗ | a):

ν(b∗, c∗ | a) = argmaxb,c V (s(ν1) = b | G)P (a → b)t1×V (s(ν2) = c | G)P (a → c)t2 .
(1.28)
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It is also possible to sample from the posterior distribution of underlying
states using the analogous forward-backward methodology described in Sec-
tion 1.3.2. The backward algorithm starts at the root node and works to-
wards the leaf nodes and then the product of the terms from the forward
and backwards algorithms at each node are used to produce samples at that
node.

I now discuss an important population genetic model, the coalescent,
which traces the ancestry of a sample backwards in time to the most recent
common ancestor. The coalescent, while a considerable simplification of the
ancestral process, is unfortunately not amenable to the efficient inference
techniques used so far in this chapter. Performing inference under this model
is a central topic in the rest of this thesis.

1.6 The Coalescent

Suppose we are given haplotype DNA data from unrelated individuals from
a single, neutrally evolving population. There may be many questions we
would like to ask: is there population substructure, and if so, what are the
levels of migration? Perhaps we wish to know about population history, to
identify the geographical origins or to find evidence for recent expansion or
decline in a population. Also biological processes, such as mutation and
recombination events, may be of interest. Finally it may be important to
find links between observed phenotypes (eg. diseases) in individuals and
the sequence data, to uncover the underlying genes and hence mechanisms
involved.

In analysing such data knowledge of the underlying genealogy would
greatly simplify the problem of inference. Population substructure and his-
tory would of course become apparent while estimation of rates would involve
merely counting events in the genealogy and measuring the total evolutionary
time. Studies designed to find associations between phenotypes and genetic
type would also be greatly aided by genealogical information; unfortunately
the genealogy of a random set of individuals in a population is usually impos-
sible to observe. It is also usually impossible to directly infer the genealogy
using the data, not least because the process of recombination causes the
relationships between individuals to change across loci.

One approach to solving this problem is to design statistical models which
approximate the ancestral process. Early models such as the Wright-Fisher
[10] or Moran [11] traced a finite population of fixed size forwards in time.
Such models, while drastic simplifications of real populations, capture many
important features of the evolutionary process and provided the basis for
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theoretical insights and a foundation for population genetics. Many other
models have also been proposed, but in this thesis I focus on the Coalescent,
introduced by Kingman in 1982 [1].

1.6.1 The Coalescent with Recombination

The Coalescent models the history of a (finite) sample of n individuals back-
wards in time. The simple coalescent assumes a neutral population of size N
(where N is very large compared to n) of constant size with random mating in
continuous time. This model can be derived as the limit of the Wright-Fisher
or Moran models with an appropriate scaling of time, although it might be
viewed as a simple model of evolution in its own right. It is possible to
extend the coalescent to include recombination, and in this thesis I follow
the method proposed by Hudson in 1983 [2]. For reasons of simplicity it is
assumed here that the rate of recombination is constant along the length of
the chromosomes.

The ancestry of the sampled chromosomes is traced backwards in time
until every site on all of the lineages has reached a common ancestor. At
any point in time a pair of lineages can undergo a coalescence event, where
the two lineages merge into one. Also a single lineage may recombine, in this
case the lineage is split into two separate lineages. To see why recombination
events cause lineages to split backwards in time it may be useful to consider
the effect of recombination when lineages are traced forwards in time.

Recombination allows the genetic material of descendant chromosomes to
be comprised of a combination of two extant chromosomes (see Figure 1.7).
To the left of the recombination break point the material is directly descended
from one parent chromosome, to the right the material is descended from the
other. If genetic information is passed directly from an extant chromosome to
a descendant chromosome at a particular locus, then the parent chromosome
is said to be ancestral to the descendant chromosome at that locus. For any
given lineage we denote the loci at which it is ancestral to a chromosome in
the sample as ancestral material

When tracing lineages backwards in time recombination events cause
chromosomes to be split at a locus. Each resulting chromosome will have
ancestral material only on at most one side of this split, see Figure 1.8. It
is only important to trace those lineages which hold some material that is
ancestral to a chromosome in the original sample. The process keeps track
of the ancestral material in each lineage and only events which affect the
history of ancestral material are considered. When a coalescent event occurs
between two lineages the set of loci on which the new lineage has ancestral
material is the union of the set of loci with ancestral material on those lin-
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Figure 1.7: Recombination forwards in time: Chromosomes A and B recom-
bine to produce chromosome C. The recombination event occurred at R and
A is ancestral to C to the left of R while B is ancestral to C to the right.

eages. The process stops when every point on the sequence has reached its
most recent common ancestor (MRCA). The time taken to reach the most
recent common ancestor ancestor at a site is denoted by ‘tMRCA’.

A formal description of the coalescent with recombination follows, it is
first necessary to define my notation:

• n : The initial number of chromosomes in the sample

• k : The number of lineages active at a given time

• Ci : The ith lineage

• xi : The set of intervals on which Ci has ancestral material

• mi : The number of intervals of ancestral material on the chromosome
Ci

• λC : The instantaneous rate of coalescence at any given time

• λR : The instantaneous rate of recombination at any given time

• Ii,j : Indicator function indicating whether chromosomes i and j can
coalesce

• r : The per generation recombination rate

• Ne : The effective population size

• ρ : =4Ner, the population scaled recombination rate
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Figure 1.8: Two Recombination events, backwards in time: blue denotes
ancestral material. On the left a recombination occurs within ancestral ma-
terial and this is then split to create two further lineages. The event on the
right does not affect the history of ancestral material so is not considered in
Hudson’s formulation of the process.

The process is Markov in time so that only the rate of coalescence, λC , and
recombination, λR, events are required to calculate the distribution of the
time to, and type of, the next event. The instantaneous coalescent rate

λC =
∑

i6=j

Ii,j = k(k − 1)/2. (1.29)

Write xi = {(xi,1, yi,1), . . . , (xi,mi
, yi,mi

)} where the xi,j and yi,j indicate the
upper and lower bounds of the jth interval on the ith chromosome. It is a triv-
ial extension to allow the boundaries of these intervals to lie on a genetic map
to allow for recombination rate variation. The instantaneous recombination
rate is

λR = ρ/2
∑

i

(yi,mi
− xi,1). (1.30)

The time to the next event is exponentially distributed with rate λC + λR.
The next event is a coalescence with probability λC

λC+λR
and is otherwise a

recombination event. In the case of a coalescence event two lineages, i, j,
are chosen uniformly and at random from those with Ii,j = 1. The resulting
lineage has ancestral material at the union of loci where the lineages i, j had
ancestral material. In the case of recombination a point is chosen uniformly
on (xi,1, yi,mi

) to produce two lineages, each with ancestral material from one
side of the split.

At the start of the process k = n, mi = 1, xi,1 = 0 and yi,1 = 1 for all i.
The process stops when a most recent common ancestor has been found at
all sites. An example genealogy is given in Figure 1.9
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Type 2

Reached MRCA (Type 2)

Mutation to Type 1

Mutation to Type 2

Type 1

Reached MRCA (Type 1)

Figure 1.9: This diagram shows an example genealogy with both mutation
and recombination events. Lighter colours at a site indicate that the marginal
most recent common ancestor has been reached at that site.

25



Compared with the biological reality of the evolution of species, the coa-
lescent is a very simple process. The coalescent assumes panmictic mating, in
real populations there is complex substructure, due to many factors, acting
at both large and small scales. The coalescent with recombination requires a
large fixed population size. It is also assumed that the sample size is (very)
small compared to the population size (really the ‘effective population size’
due to Wright [12, 13], although this is not discussed here). Two specific
consequences of this, under the coalescent are that

1. No more than two lineages can coalesce at any instant

2. Recombination events never occur between a pair of lineages in the
sample. Instead the second ancestor of a recombinant chromosome is
always assumed to be non ancestral.

Some modern data sets are starting to challenge these assumptions. Case
control studies involve thousands of individuals. Furthermore, in the presence
of high levels of recombination (as expected over large genomic regions) the
number of ancestors at some point in the past may be far in excess of the
sample size. This means that multiple simultaneous coalescence events or
recombinations between individuals in the sample are no longer unlikely.

Of course, all models must make approximations and the importance of
the coalescent in population genetics rests on its ability to simply capture
the evolutionary process and to elucidate important information from the
data. While it is hard to provide a great deal of evidence that the coales-
cent model has achieved this goal it has been widely used within population
genetics for many years. Coalescent theory has allowed the construction of
summary statistics and simplified models that are used to find evidence for
population structure, and infer aspects of human history. Perhaps most con-
vincingly: coalescent based recombination rate estimates from McVean et al.
[14] show high levels of agreement [15] with previous pedigree analyses and
more recent direct experimental approaches such as those of Jeffreys et al.
[16]. Although the appropriateness of the coalescent to natural populations
is worth considering I assume for the rest of this thesis that the coalescent
provides a reasonable model for inference on population genetic data.

Having decided that the coalescent model is a reasonable model for the
ancestry of a sample I turn to the question of performing inference. The
coalescent might be described as a simple model, both because of the approx-
imations mentioned above, but also because of the ease and computational
efficiency of simulating coalescent genealogies. Unfortunately inference un-
der the coalescent is much less straightforward. The most powerful methods
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of performing statistical inference involve calculation of the likelihood of pa-
rameters of interest. This is problematic under the coalescent because of
the enormous state space of genealogies. The likelihood of the parameters,
θ, can only be calculated precisely through an integration over all possible
genealogies:

L(θ | D) = P (D | θ) =

∫
P (D | G, θ)P (G)dG. (1.31)

Direct likelihood calculations based on attempting to evaluate this integral
(eg. a recursive method due to Griffiths and Marjoram as part of their
paper in 1996 [17]) fail in all but the simplest of scenarios; the summation
takes infeasible amounts of computing resources for most data sets of interest.
Another approach is to use Monte Carlo estimates of the likelihood, the most
direct approach approximates Equation 1.31 using the formula:

∫
P (D | G, θ)P (G)dG ≈

1

M

M∑

i=1

P (D | G, θ) (1.32)

where the genealogies are simulated from the coalescent prior.
Equation 1.32 gives an extremely poor estimator of the likelihood as most

of the genealogies are incompatible with the data. These incompatibilities
lead to insignificant contributions to the likelihood from the vast majority
of simulations. One method of improving the estimator is to use Markov
Chain Monte Carlo (MCMC) techniques (see eg. [18, 19]). Unfortunately
these methods remain impractical as it is not known how to construct a
chain that converges in reasonable time. Alternatively importance sampling
can be used to generate only genealogies compatible with the data. This
approach is used in conjunction with the recursion described in Griffiths and
Marjoram to provide a more computationally tractable approach. More ef-
ficient importance samplers have recently been developed by Stephens and
Donnelly [20], in the absence of recombination, and Fearnhead and Donnelly
[21], which includes recombination. These methods, while sizeable improve-
ments on previous methods, are also computationally intractable except for
very small data. This is discussed in more detail in Chapter 4.

This thesis explores the possibility of using approximations to the coales-
cent process to provide more computationally efficient means to calculate the
likelihood of the data. In 2000 Stephens and Donnelly suggested a model of
evolution that could be used to approximate the probability of observing a
haplotype given a pre-existing set of haplotypes in the absence of recombina-
tion. This model is based on the notion that the haplotype can be constructed
as an imperfect copy of the previous haplotypes and is sometimes known as
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the ‘Look down and Copy’ model (of sequence evolution). In 2001 the Look
down and Copy approach was extended by Fearnhead and Donnelly to in-
clude recombination. They introduced a Hidden Markov Model that was
adapted by Li and Stephens to produce a fast algorithm that approximates
the likelihood of a set of population genetic data. The likelihood is calculated
using a product of these approximate conditionals and is often referred to as
a PAC likelihood.

This model has caused widespread interest and many methods (see eg.
[22, 23]) have been designed which take advantage of its computational ef-
ficiency, although most have not yet been published. Although the scheme
can be used to tackle a wide range of questions in population genetics that
have previously been computationally impractical, the underlying model suf-
fers from both theoretical and practical drawbacks that affect accuracy. In
Chapter 2 I investigate possible alternatives to the scheme proposed by Li and
Stephens. I also analyse the strengths and weaknesses of the PAC approach
and the limitations imposed by using models of this form.

In Chapter 3 I propose a new model, the Sequentially Markov Coalescent
or SMC, for the ancestry of a population in the presence of recombination.
This model approximates the coalescent with recombination and involves a
simple alteration to the coalescent. I prove that this alteration gives rise to
Markovian structure when genealogies are generated along sequences. The
state space of genealogies is also much reduced under this model in the pres-
ence of high recombination rates. In Chapter 3 I investigate the properties
of this model, how well it approximates the coalescent. I look both at the
properties of genealogies sampled under the SMC and of data simulated using
it.

Having introduced a new approximation to the coalescent I investigate
the potential for population genetic inference under the SMC in Chapter 4.
While there are many possibilities for using the structure of the SMC to
improve computational efficiency, investigating even a handful of these fully
is beyond the scope of this thesis. I focus on the method of genealogical
sequential importance sampling - following the method of Fearnhead and
Donnelly [21] from 2001.

The primary goal of Chapter 4 is to compare inference under the SMC
to the coalescent. I also investigate the performance, limitations and poten-
tial for improvement of genealogical importance sampling. The performance
improvement that might be expected under the SMC depends broadly on
the quantity of data that can be analysed using this technique and so im-
provements to this method will impact on the ability of the SMC model to
improve inference.

Finally, in Chapter 5, I discuss the conclusions I have arrived at after
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performing the analyses here and suggest possible improvements for future
methods designed to perform inference on recombinant population genetic
data.
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Chapter 2

Non Genealogical

Approximations to the

Evolutionary Process

2.1 Introduction

Although much can be learned from population genetic data, it is often hard
to extract accurate estimates of quantities of interest [20, 24]. In most cases,
the full signal for evolutionary parameters or other important quantities, such
as recombination rates or the phase of diploid genotype data, can only be
extracted by modelling the complex evolutionary history of the data. The
highly stochastic nature of the processes involved and the weak information in
recombinant data about the ancestry creates a situation where full inference
is extremely computationally intensive, even for small data sets. Approxi-
mations are therefore required and in constructing these approximations it is
important to capture the key features of the process and the stronger signals
in the data, but to avoid modelling those complex processes which contribute
little extra information about the parameters of interest.

The best current methods for performing full likelihood inference on pop-
ulation data use a Monte Carlo average from genealogies simulated under the
coalescent model of ancestry [20, 21, 18, 19]. Unfortunately, using current
methods the number of genealogies required to get an accurate estimate of the
likelihood grows extremely fast as the size of the data increases; these meth-
ods are prohibitively computationally expensive for anything but the smallest
data sets. However, by understanding the properties of more complete mod-
els it may be possible to design new approximate models which capture more
of the information in the data. Theoretical properties of the ancestral pro-
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cess and the distributions of certain quantities (such as the distribution of
the evolutionary time between a pair of sequences) can be calculated under
the coalescent and used to inform new approximations. The key is to capture
the primary features of the processes leading to genetic variation data while
simplifying the mechanism in order to produce computational efficiency.

The models under discussion in this chapter all describe the distribution
of the type of a new sequence conditional on having observed a pre-existing
set of sequences. The models try to capture certain features of the coalescent
process:

• Under the coalescent a new sequence would show high degrees of local
similarity to those already in the sample, however the new sequence
might be most closely related to different sequences along its length.
The rate that these changes between sequences occur is a function of the
recombination rate. The parameter ρ in these models directly affects
the probability of switching between the ‘inherited’ sequences in the
sample.

• Under the coalescent process the rate of coalescence rises faster than
the rate of recombination or mutation as the sample size increases.
To capture this the approximations here all propose sequences more
similar to those in the sample when the sample size is large.

• There is a correlation between the density of mutations on a new se-
quence and the distances between recombination events, this correla-
tion is due to the effect of the evolutionary time separating the se-
quences. For example sequences separated by a short evolutionary
distance will show a low density of allelic differences and share large
regions unbroken by historical recombination events.

• Under the infinite sites model it is possible for the data to be incom-
patible with a single tree, and it is therefore possible to be certain
that recombination events have occurred in the history of the sample.
Approximate models should capture this strong form of evidence for
recombination. It is also important to avoid inferring recombination
when little or no evidence for recombination is present.

Not all of these features are captured by all of the models and none of them
correctly interpret the signal for recombination given by incompatibilities.
These qualities are discussed in more detail later.
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2.2 Li and Stephens

In 2003 Li and Stephens [22] developed a model to approximate the process
of inheritance. This model allows fast inference on data with recombination,
even for large data sets.

Let h1, . . . , hn denote n sampled haplotypes, typed at L bi-allelic loci.
The key observation made by Li and Stephens is that:

P (h1, . . . , hn) = P (h1) ∗ P (h2 | h1) ∗ . . . ∗ P (hn | h1, . . . , hn−1) (2.1)

This expresses the likelihood in terms of a product of conditional proba-
bilities that may be easier to approximate than the full likelihood itself.
Unfortunately this observation in itself doesn’t allow efficient calculation of
the likelihood as no practical exact methods are known to calculate these
conditionals. However approximate models for generating a new haplotype
given a set of known haplotypes have been developed [21, 22, 25]. In this
chapter I present four schemes which use the approach of calculating a ‘prod-
uct of approximate conditional’ (or PAC) likelihoods. I analyse the strengths
and weaknesses of the overall approach and also the relative merits of the
individual approximations. Informally, all the processes for generating a new
haplotype, hk+1, from k pre-existing haplotypes, h1, . . . , hk, can be described
as follows:

1. As haplotypes share a common ancestor they should be related; this is
done by allowing hk+1 to ‘copy’ previously considered haplotypes.

2. Some pairs of sequences show regions of similarity due to a high de-
gree of relatedness but recombination allows different relationships at
different points along the genome, so hk+1 may copy a different hj at
different loci.

3. Mutation creates SNPs which are novel, so that haplotypes derived
from the same ancestor at a locus may differ.

In this way the schemes create haplotypes which are an imperfect mosaic of
the haplotypes already in the sample. That is, for k ≥ 1, at each SNP hk+1

is an imperfect copy of hj for some j. To calculate P (h1) they assume that
the first haplotype is equally likely to be any of those in the sample.

The following is a formal description of the Li and Stephens model in-
cluding a method for efficient likelihood calculations under this model. I will
refer to this model as πL&S.

Description of πL&S
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Let Xj denote which haplotype hk+1 copies from at site j. To approx-
imate recombination they model the Xj as a Markov chain on {1, . . . , k}
with P (X1 = x) = 1/k (∀x ∈ {1, . . . , k}). Let dj denote the physical dis-
tance between markers j and j + 1. Define the recombination parameter by
ρj = 4Ncj where N is the effective population size, and cj is the average rate
of crossover per unit physical distance, per meiosis, between sites j and j +1.
The transition rate is constructed assuming that recombination events occur
according to a Poisson process of rate ρjdj/k, the division by k here reflects
the shorter copying time when there are more sequences in the sample. The
probability of no recombination events between sites j and j + 1 is therefore
e−ρjdj/k and the probability of at least one recombination is (1 − e−ρjdj/k).
Given a recombination there is probability 1/k of recombining to any one of
the k sequences already in the sample (including that copied at the previous
site). In

Pr(Xj+1 = x′ | Xj = x)

=

{
exp(−ρjdj/k) + (1 − exp(−ρjdj/k))(1/k) if x′ = x
(1 − exp(−ρjdj/k))(1/k) otherwise

To capture the mutation process they allow ‘imperfections’ in the copy-
ing scheme, that is, with probability k/(k + θ) the copy is exact and with
probability θ/(k + θ) a ‘mutation’ occurs. These approximate the probabil-
ity that the next event back in time on the new sequence is a coalescence
event (rate k) or mutation (rate θ). Specifically, if hi,j denotes the allele at
site j in haplotype i then, given the copying process X1, . . . , XS the alleles
hk+1,1, hk+1,2, . . . , hk+1,S are independent, with

P (hk+1,j = a | Xj = x, h1, . . . , hk)

=

{
k/(k + θ̃) + 1

2
× θ̃/(k + θ̃) hx,j = a

1
2
× θ̃/(k + θ̃) hx,j 6= a.

(2.2)

The term here corresponding to when hk+1 copies x at site j and retains the
same type is a sum over two possible terms: the probability that no mutation
events have occurred since the common ancestor of hk+1 and x added to the
probability of a sequence of mutations that leave hk+1 and x with the same
type. The term θ̃/(k+ θ̃) is an approximation to the probability that the first
event backwards in time on hk+1 is a mutation event, k/(k+ θ̃), approximates
the probability that the first event is a coalescence event. Li and Stephens

use the quantity θ̃ =
(∑n−1

i=1
1
i

)−1
as their mutation parameter.

The above formulation of πL&S provides a description of how to simulate
data under their new model but the problem of inference is more difficult.
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The likelihood can be viewed as a sum over all possible histories that could
give rise to the data. The advantage of the Li and Stephens model is that
this now becomes tractable; the forward algorithm (see Chapter 1) can be
used to sum over all possible states.

To do this, let hk+1,≤j denote the types of the first j sites of haplo-
type hk+1. For ease of notation let αj(x) = P (hk+1,≤j, Xj = x) and let
γj+1(x) = P (hk+1,j = a | Xj = x, h1, . . . , hk), (given in (2.2)). Then α1(x)
can be calculated directly for x = 1, . . . , k as 1/k multiplied by the appro-
priate formula from Equation 2.2 at site 1. To compute α2(x) . . . , αL(x) the
forwards algorithm (see Equation 1.12 in Chapter 1) can be used:

αj+1(x) = γj+1(x)
k∑

x′=1

αj(x
′)P (Xj+1 = x | Xj = x′)

= γj+1(x)

(
pjαj(x) + (1 − pj)

1

k

k∑

x′=1

αj(x
′)

)
, (2.3)

where pj = exp(−ρjdj/k). The value of πL&S(hk+1 | h1, . . . , hk) is then cal-

culated as
∑k

s=1 αL(s). This formula precisely mimics that given in Equation
1.12 in Chapter 1.

The advantage of this scheme is that it can be calculated very fast. The
dynamic programming algorithm takes O(Ln2) time to compute which is
possible even for large data sets.

Li and Stephens note that their scheme captures certain aspects of co-
alescent data, when simulating a new haplotype given a set of previously
simulated haplotypes:

1. The new haplotype is likely to approximate haplotypes with high fre-
quency in the sample.

2. The probability of seeing new haplotypes decreases as the sample size
increases.

3. The probability of seeing a new haplotype increases as the mutation
rate increases.

4. When a haplotype is not an exact copy of a previously simulated hap-
lotype it will typically differ by only a small number of mutations. It
is unlikely to be completely different to all existing haplotypes.

5. The new haplotype may be very similar to one previously sampled
haplotype in one location while being more closely related to other
haplotypes at other locations due to recombination.
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Unfortunately, there are problems with this method, both theoretical and
practical. Due to the approximations made in calculating P (hk+1 | h1, . . . hk)
the ordering in which samples are considered influences the likelihood of the
data strongly. To attempt to compensate for this it is necessary to average
over orderings. However the number of possible orderings is so high as to
make this infeasible even for a small sample, so only a fraction of these can be
used. Li and Stephens use 20 orderings to calculate the likelihood; they claim
that although the likelihood can change significantly for different orderings
the shape of the curve remains roughly constant and relative likelihoods can
be calculated as long as the same set of orderings is used for each value of
the parameters. This, at least, should allow estimated maximum likelihood
estimates of parameters not to vary greatly between runs. Unfortunately,
even the averaged likelihoods produced by this method provide biased esti-
mates of ρ. Furthermore this bias is hard to model and no simple correction
is available. In their paper Li and Stephens decided to measure the bias in
a number of data sets and adjust their estimates based on these measure-
ments. It is therefore unknown how the bias in πL&S may change when the
data does not correspond well to those data sets used to inform their bias
correction. For example, rate estimation may deteriorate in the presence of
variable recombination rate estimation.

2.3 Alternatives to πL&S

The problems encountered by the scheme of Li and Stephens are a result of
the fact that the conditional likelihoods they use are only an approximation
to the true likelihoods. Were the true conditional likelihoods known then only
one ordering would be required and there would be no bias. With this in mind
I propose three alternative approximations to these likelihoods that attempt
to capture further features of the data. A natural model to consider is the
model on which πL&S is based, that proposed by Fearnhead and Donnelly
to generate approximate likelihoods in their importance sampler [21]. This
scheme includes an explicit concept of the evolutionary time between the
haplotype under examination and the haplotypes it copies at each site. Under
this scheme the rate of mutation depends on the time between the haplotypes.
I also investigate two novel schemes, the first can be viewed as an extension of
the scheme proposed by Fearnhead and Donnelly to allow the time between
sequences to also affect the rate of recombination and the final approach
is to explicitly model the block like nature of inheritance and calculate the
likelihoods for specific blocks analytically.
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2.3.1 Fearnhead and Donnelly, πF&D

Firstly I investigate the scheme proposed by Fearnhead and Donnelly in 2001
[21]. Although this scheme was not intended as a full model for sequence
evolution it is an approximation to the quantity P (hn | h1, . . . , hn−1), denoted
here by πF&D. To understand the differences between πL&S and πF&D it is
necessary to consider the genealogical time separating a pair of sequences,
t. Under the coalescent when t is large the expected density of mutations
is higher and the distances between recombination events are shorter on
average. When t is smaller the reverse holds with sparse allelic differences
and long shared tracts unbroken by recombination.

A natural approach to dealing with the unknown parameter t is to in-
tegrate over all possible t. The Li and Stephens model can be viewed as
an integration over t at each site, independently. Fearnhead and Donnelly
explicitly model t in their conditional likelihood calculations. In regions un-
broken by recombination events t should not change, and this is implemented
in their model. The rate at which mutations arise between sequences is then
dependent on t. In the model of Fearnhead and Donnelly the rate at which
recombination occurs is independent of t.

The evolutionary time between sequences is a continuous quantity and so
implementing t in a Hidden Markov Model is not directly amenable to effi-
cient likelihood calculation. Instead, using the known distribution of t under
the coalescent Fearnhead and Donnelly propose the numerical approximation
of Gaussian Quadrature (see eg. Kreyszig [26]) to perform their block-wise
integration over t. For a given number, a, Gaussian Quadrature is used to de-
fine specific values of the times between sequences, t1, . . . , ta, and associated
weights, w1, . . . , wa so that for a general function f ,

∫ ∞

0

exp(−t)f(t)dt ≈

a∑

i=1

wmf(ti). (2.4)

The weights are chosen so that
∑a

i=1 wi = 1. Using this approximation it is
then possible to use the same site by site dynamic programming approach
used in the Li and Stephens scheme, πL&S. I use a = 4 in this implemen-
tation to coincide with the values used by Fearnhead and Donnelly. This
corresponds to four times as many possible states in the HMM as in the Li
and Stephens approach: at every site there are four times at which the new
sequence might copy from each of the already sampled sequences.

The scheme proposed by Fearnhead and Donnelly built on the ‘Look
down and Copy’ model designed by Stephens and Donnelly [20] in 2000.
Fearnhead and Donnelly envisage a two stage process by which the new
sequence is derived. Firstly recombination events are placed on the length
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of the sequence and, in between these events, a sequence to ‘copy’ from is
chosen. In each of these blocks containing no recombination the Look down
and Copy model from Stephens and Donnelly is used to determine the allelic
states.

To perform inference a Hidden Markov Model is used and I follow the
approach given by Fearnhead and Donnelly. To calculate the transition rates
Fearnhead and Donnelly consider the next event backwards in time for each
pair of adjacent sites. Either the next event is a recombination or a coa-
lescence event. When a coalescence event occurs then the same sequence is
copied at both sites. Otherwise a new sequence is chosen independently of
the copied sequence at the last site. In this case the weights from Gaussian
quadrature are used to determine the probability of each discrete time point.
More formally, and using the same notation as before, denote the time that
hk+1 copies haplotype Xj from at site j by tj. The transition probabilities
are then given by

Pr(Xj+1 = x′, tj+1 = t′ | Xj = x, tj = t)

=

{
k

k+ρjdj
+
(

ρjdj

k+ρjdj
× wt

k

)
if x′ = x, t′ = t

ρjdj

k+ρjdj
×

wt′

k
otherwise

In Fearnhead and Donnelly 2001 they use a general multi-allelic mutation
model. The probability of observing each non-recombinant sequence segment
is defined by a double summation over all sequences in the sample and mu-
tation patterns that give rise to the new sequence from these already known
sequences. So as to perform direct comparisons with the πL&S and due to the
recent interest in SNP data I have used the bi-allelic mutation model used
by Li and Stephens with the same mutation parameter, θ̃ but now scaled by
t to reflect the evolutionary total time between the sequences. Set

P (hk+1,j = a | Xj = x, h1, . . . , hk)

=

{
k

k+θ̃t
hx,j = a

θ̃t
k+θ̃t

hx,j 6= a
(2.5)

where k is the number of sequences already in the sample. An alternative
formulation would be to set the mutation probability to (1 − exp(−θ/k)) as
though the time t were known exactly. If many time points are used this
seems more appropriate, of course, for only 1 time point (and so perhaps
also for a small number) then the current formulation is more comparable
with Li and Stephens. The forward algorithm (from Chapter 1) can be used
to calculate the likelihood of the complete data in O(n2L) time (remember
that n is the number of individuals in the whole sample).
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Let tj denote the time that hk+1 copies from haplotype Xj at site j.
Define αj(x, t) = P (hk+1,≤j | Xj = x, tj = t) and γj+1(x, t) = P (hk+1,j = a |
Xj = x, tj = t, h1, . . . , hk), (given in (2.5)). Then

αj+1(x, t) =

= γj+1(x, t)
k∑

x′=1

4∑

t′=1

αj(x
′, t′)P (Xj+1 = x, tj+1 = t | Xj = x′, tj = t′)

= γj+1(x, t) ×

(
pjαj(x, t) + (1 − pj)

1

k

k∑

x′=1

4∑

t′=1

wt′αj(x
′, t′)

)
, (2.6)

where pj =
ρjdj

k+ρjdj
. The value of πF&D(hk+1 | h1, . . . , hk) is then given by

k∑

s=1

4∑

t=1

αL(x, t). (2.7)

This scheme is slower than Li and Stephens but the fixed time within
non-recombinant blocks may be more appropriate to population genetic data.
However a simplifying assumption that the recombination process is indepen-
dent of the evolutionary time between sequences is made. The next scheme
attempts to incorporate the effect of evolutionary time into the recombina-
tion process.

2.3.2 A new algorithm, πR

Allowing the rate of recombination to depend on the time between sequences
is a natural extension of the Fearnhead and Donnelly model to try to capture
more features of the evolutionary process. However care must be taken:
recombination events are more likely when the evolutionary time is large. In
a direct implementation that allowed recombinations to depend on time, this
greater rate of recombination would lead to a bias in the distribution of the
tMRCA at each site (away from large copying times). Under the coalescent
(and in the absence of data) the marginal distribution of the evolutionary
time between two haplotypes should be exponential of rate 1. Using the
same approach as Fearnhead and Donnelly I approximate this distribution
by a number of discrete time states and appropriate weights that are chosen
using Gaussian quadrature. It is then possible to remove the bias against
large copying times by altering the transition rates between different time
states.

More formally, consider a possible states, t(1), . . . , t(a), which represent
the possible times at which copying can occur. Let tj denote the time at site j
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and let the event Rj,j+1 denote a recombination between sites j and j +1. To
account for bias I introduce transition rates from time t to time t′ conditional
on recombination: λt,t′ . Now, the model is defined to be symmetric in the
direction that the haplotypes are read. Also the prior distribution of evolu-
tionary time between sequences does not change along the sequence. Hence
the probability of a recombination event given time information at either of
its flanking sites (but not both) is independent of whether it is the left or right
hand site known about. That is: P (Rj,j+1 | tj = t) = P (Rj,j+1 | tj+1 = t).
Further, the model assumes independence in the copying process across a re-
combination breakpoint so the λt,t′ ’s are independent of t and can be viewed
as the probability of entering time state t′ given a recombination event - ie.
λt,t′ = λt∗,t′ = λt′ ∀t, t∗. This approximation can be overcome in the two
sequence case, however for multiple sequences the situation is more compli-
cated and it seems unlikely to be a major contributing factor to the efficacy
of these schemes. The λt′ can be derived, taking an arbitrary site j:

λt′ = P (tj+1 = t′ | Rj,j+1)

=
P (Rj,j+1 | tj+1 = t′)P (tj+1 = t′)

P (Rj,j+1)

=
P (Rj,j+1 | tj = t′)P (t0 = t′)

P (Rj,j+1)

=
rt′wt′

r̄
(2.8)

where the wt′ are the weights assigned to each time point by Gaussian quadra-
ture (and therefore correspond to the approximation to the coalescent time
distribution, which we hope to achieve at stationarity) and r̄ =

∑k
i=1 wt(i)rt(i).

In the absence of data there should be no net shift along the sequence in the
probability of being in each state so, by symmetry in the direction in which
the sequence is read, the total transition between the different states should
be equal:

wtrtλt,t′ = wt′rt′λt′,t ∀t, t′. (2.9)

Note that the solution given in equation 2.8 trivially satisfies the above cri-
terion.

It is now possible to give a mathematical formulation of the model using
the same notation as in the previous two cases. We use a transition rate of
a similar form to that of Li and Stephens’ scheme.

Pr(Xj+1 = x′, tj+1 = t′ | Xj = x, tj = t)

=

{
exp(−ρjdjt/k) + (1 − exp(−ρjdjt/k))(λt′/k) if x′ = x, t = t′

(1 − exp(−ρjdjt/k))(λt′/k) otherwise.
(2.10)
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The factor λt′/k is the marginal prior probability of copying from any specific
sequence at time t′.

I use the same mutation model as in my implementation of the Fearnhead
and Donnelly scheme:

P (hk+1,j = a | Xj = x, tj = t, h1, . . . , hk)

=

{
k

k+θ̃t
hx,j = a

θ̃t
k+θ̃t

hx,j 6= a
(2.11)

where k is the number of sequences already in the sample.
Again the forward algorithm can be used to calculate the likelihood in

O(n2L) time in precisely the same way as used in the Fearnhead and Donnelly
scheme.

2.3.3 An Explicit Block-wise approach, πL2

The previous models for calculating the likelihood of a haplotype given a set
of previously sampled sequences have allowed the likelihood to be calculated
site by site. This model considers all of the data in regions, bounded by re-
combination events (and unbroken by recombination). Within these regions
the likelihood, given a sequence to copy from, is calculated analytically. Let
the term block denote a stretch of a single haplotype bounded by two recom-
bination events with no internal recombination. This algorithm is indexed
by the gaps between sites. For each gap between sites, i, a partial likelihood,
P (Di | θ, ρ, R(i)), using only the data up to i and conditional on a recombi-
nation at this point, R(i), is calculated. I use P (Di) as a shorthand for this
quantity and P (Di,j) to denote the likelihood conditional on recombinations
at j (at the left) and i (at the right) and when only the sites from j to i are
considered. For ease of description I first consider only two sequences typed
only at L segregating loci. I derive an approximation to the joint proba-
bility of observing these sequences in a region unbroken by recombination
and bounded on the right by recombination at i. The likelihood is then a
recursive sum over all possible block combinations. For i > j the recursion
can be described as follows:

P (Di | θ, ρ, R(i)) =
i∑

j=1

P (Di,j | θ, ρ, (j → i))P (j → i)P (Dj). (2.12)

where j → i denotes an unbroken block ending at i (by recombination, unless
i = L) given the start of the block is at j. The likelihood of the parameters
given all L sites is then P (DL | θ, ρ). Using (2.12) above it can be seen
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that the algorithm takes order L2 time to calculate the likelihood of the next
haplotype.

Consider the quantity

P (Di,j | θ, ρ, (j → i)) × P (j → i).

It is easiest to view this as the joint probability, P (Di,j, (j → i) | θ, ρ), for
this section. Let j, i be the first and last sites of a given block respectively
then, for ease of notation, I drop the explicit conditioning on θ and ρ to
define

P (m, (j → i)) = P (Di,j, (j → i) | θ, ρ) (2.13)

where m denotes the pattern of mutation in this block. I now derive P (m, (j →
i)) for a block that is bounded on the left by the start of the data and is
bounded on the right by a recombination event. To calculate this quantity
it is first necessary to derive the distribution of block lengths in the absence
of data. I do this by considering two discrete sequences of infinite length in
a Wright-Fisher population of N individuals.

Define the time in a generation to be 1. Only segregating sites are explic-
itly considered, to account for this the distance between the jth and j + 1th

segregating sites is denoted by dj. The (per generation) recombination rate
in this region is denoted by rj and recombination events are assumed to be
independent. The probability of no recombination between the first l segre-
gating sites (hence l − 1 gaps between sites) and at least one recombination
between sites l and (l + 1) in the first τ generations is therefore:

P (l | τ) =
l−1∏

j=1

(1 − rjdj)
2τ × (1 − (1 − rldl)

2τ ). (2.14)

For a diploid population with N individuals the Wright Fisher model
gives the prior distribution on τ as

P (τ) =
1

2N

(
1 −

1

2N

)τ−1

hence (2.15)

P (l) =
∞∑

τ=1

(
1

2N

(
1 −

1

2N

)τ−1

×

l−1∏

j=1

(1 − rjdj)
2τ × (1 − (1 − rldl)

2τ )

)
.

In order to calculate this quantity under the coalescent a standard limiting
argument is followed in the next few stages. Setting t = τ

2N
gives

∞∑

τ=1

(
1

2N

(
1 −

1

2N

)2Nt−1

×
l−1∏

j=1

(1 − rjdj)
4Nt × (1 − (1 − rldl)

4Nt)

)
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and setting ρj = 4Nrj this becomes

∞∑

τ=1

(
1

2N

(
1 −

1

2N

)2Nt−1

×
l−1∏

j=1

(1 − ρjdj/4N)4Nt × (1 − (1 − ρldl/4N)4Nt)

)

Noting that limn→∞(1 + x/n)n = ex and letting N → ∞ in conjunction with
transforming our sum over τ into an integral over t gives

∫ ∞

0

e−t

l−1∏

j=1

e−tρjdj(1 − e−tρldl)dt

=

∫ ∞

0

e−te−t(
∑l−1

j=1 ρjdj)(1 − e−tρldl)dt.

(2.16)

Let Lleft denote
∑l−1

j=1 ρjdj and Lright denote
∑l

j=1 ρjdj then this integral
becomes:

∫ ∞

0

e−t(1+Lleft) ×
(
1 − e−tρldl

)
dt (2.17)

=

∫ ∞

0

e−t(1+Lleft) − e−t(1+Lright)dt which is

P (l) =
( 1

1 + Lleft

)
−
( 1

1 + Lright

)
. (2.18)

Note that the integrand in (2.17) is P (t)P (l | t), so

P (l | t) = e−tLleft ×
(
1 − e−tρldl

)
. (2.19)

To calculate P (m, (j → i)), as defined in 2.13, for a particular recombination
block note that:

P (m, (j → i)) =

∫ ∞

0

P (t)P ((i, j) | t)P (m | (j → i), t)dt (2.20)

where P ((i, j) | t) denotes the probability of a recombination in between sites
i and i + 1 given that the block started with site j.

Equation (2.20) is used for calculating the partial likelihoods at both
boundaries and for any block in the middle of the data. Appropriate substi-
tutions need to be made for P (t) and P (l | t) in each case. At the right hand
boundary P (l | t) is a sum over all possible places for the right hand bound
on where the recombination could have occurred.
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Figure 2.1: This figure a genealogical interpretation for the new sequence
in the sample. Under the coalescent model there is an increased rate of
coalescence (hence a shorter distribution to the tMRCA) when there are
more sequences in the sample. The rate of coalescence of the new sequence
to the rest of the tree is proportional to the number of extant sequences in
the tree. This is approximated by the initial number of lineages, k, although
the number of sequences in the rest of the tree changes through time with
coalescence and recombination events on other sequences. I use this simple
form to be consistent with the other schemes.

I first consider a block starting at the left hand edge of the data, with
a recombination between sites l and l + 1. I model mutation as a Poisson
process on the block and assume that all mutations lead to bi-allelic sites
and that all are observed. Consider now k already observed haplotypes, I
use ideas from coalescent theory (see Figure 2.1) to adjust the distribution
of evolutionary time to

P (t) ≈ ke−kt.

Mutations at each site are independent and the mutations are assumed
to occur as a Poisson process in time. This gives the following expression for
the mutation pattern m in a block from j to i:

P (m | (i, j), t) = (tθ)me−tθ(i−j)

where m is the number of mutations in the mutation pattern m. Continuing
the derivation for the specific situation where j = 0 and i = l < L this
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becomes:

P (m, (0 → l)) =

∫ ∞

0

P (t)P (l | t)P (m | l, t)dt

=

∫ ∞

0

ke−kte−t(1+Lleft)
(
1 − e−tρldl

)
(tθ)me−tθldt

= kθm

∫ ∞

0

tme−t(k+Lleft+θl)dt −

∫ ∞

0

tme−t(k+Lright+θl)

= kθm

(
1

(k + Lleft + θl)m+1
−

1

(k + Lright + θl)m+1

)
.(2.21)

The above formula deals with blocks that start at the left hand edge of the
data and end with a recombination to the left of the end of the data. There
are four scenarios in total for which this quantity must be calculated.

1. From the left hand edge of the data to a site before the right hand edge
of the data.

2. From the left hand edge of the data to the right hand edge.

3. From a point to the right of the left edge of the data to the right hand
edge.

4. Between two points in the middle of the data.

Note that in situations 3 and 4 the distribution of time between sequences
is altered by conditioning on a recombination event between the SNP just
before this block begins and the first SNP in the block. Let P l(R | t) be
the probability of recombination conditioning on the time to the left of the
recombination breakpoint being t and P r(R | t) be the probability of recom-
bination given that the time to the right of the recombination is t. Also use
P r(t | R) as the appropriate analogue for the reverse condition. We again
assume that blocks separated by recombination are independent, and so the
distribution of evolutionary time in one block is independent of the features
of the previous. Thus by symmetry in the direction in which the data is
read P l(R | t) = P r(R | t) (following the reasoning in the derivation of πR).
Hence

P r(t | R) =
P r(R | t)P (t)

P (R)

=
P l(R | t)P (t)

P (R)

=

(
1 − e−ρjdjt

)
ke−kt

ρjdj/(k + ρjdj)
(2.22)
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where P (R) is calculated as
∫∞

t′=0
P (R | t′)P (t′)dt′.

It is finally necessary to calculate P (l | t) when the right hand edge of the
block is the right hand extreme of the data. Let Λ denote the position, in
the full unobserved haplotype, where the next recombination event occurs.
Then we can rewrite P (l | t) as P (Λ ≥ l | t, ). Now

P (Λ ≥ l | t, ) =
∑∞

a=0 P (l + a | t)

=
∑∞

a=0 e−t(
∑l+a−1

j=1 ρjdj) − e−t(
∑l+a

j=1 ρjdj)

= e−t(
∑l−1

j=1 ρjdj).

Of course the dj are not specified outside the range of the data, however these
terms do not appear in the final result, so they can be chosen arbitrarily.

To save computational resources recombination events are only allowed
at the midpoints between segregating sites and the mutation rates for each
segregating site are then adjusted to represent to the number of sites in the
interval between both midpoints. This then gives rise to the following final
formulae:

Let Li,j denote
∑i−1

k=j ρkdk and
∏

m θm denote the product of the mu-
tation rates across the intervals at each of the segregating sites in m, this
is analagous to θm in equation 2.21 but accounts for the distance between
SNPs. Finally, for further ease of notation let

g(i, j,m, k) =
1

(k + Li,j + θ∗)m+1

where θ∗ denotes the total mutation rate across the block. Then

P (block) =





n
∏

m θm (g(0, i,m, k) − g(0, i + 1,m, k)) i < L, j = 0

n
∏

m θm (g(0, L,m, k)) i = L, j = 0

k(k+ρ)
∏

m
θm

ρ
(g(j, i,m, k) − g(j − 1, i,m, k)) i = L, j > 0

k(k+ρ)
∏

m
θm

ρ
(g(j, i,m, k) − g(j − 1, i,m, k)−

g(j, i + 1,m, k) + g(j − 1, i + 1,m, k) ) i < L, j > 0.

(2.23)

Having derived likelihoods for individual blocks it is then possible to use
dynamic programming to calculate the probability of observing a haplotype
hk+1 given a set {h1, . . . , hk} of previously observed haplotypes. Similar
iterative formulae to those used in equations 2.3 and 2.6 can be employed.
Let Xj,i denote the haplotype hk+1 copies from between sites j and i. Also,
let αi = P (hk+1,≤i | Ri) where event Ri states that there is a recombination
event at i. Finally, define γi,j(x) = P (hk+1,(j,i) | Xj,i = x,Ri) . Then
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αi+1 =
i−1∑

j=0

∑

x∈h

γi,j(x) × αj (2.24)

where α0 = 1. Then
P (hk+1 | h1 . . . hk) = αL (2.25)

2.4 Results

Assessing the strengths and weaknesses of these schemes presents several
technical difficulties. Firstly the relative performance of each model will de-
pend on its application - I use ability to estimate a constant ρ as a measure
of the model’s ability to mimic the coalescent. This is because the Li and
Stephens scheme was developed to estimate recombination rates. There are
some disadvantages of using this method of assessment. Firstly it is im-
possible to calculate the true posterior distribution, or even the maximum
likelihood estimate of ρ as large amounts of data are required to be at all
informative. Such data set sizes are impossible to analyse using current full
likelihood methods. Even for the data set sizes used here there is little infor-
mation about ρ and the data may sometimes be consistent even with ρ = ∞.
This means that estimators may have infinite variance and standard meth-
ods for summarising them may produce misleading results. Nevertheless I
try to use straightforward analyses wherever possible - more complicated ap-
proaches also suffer from a number of difficulties and reduce the transparency
of the study.

To assess the different PAC schemes I used the program makesample by
Hudson [27]. This uses the coalescent with recombination to generate data
sets under neutrality assuming, in this case, constant population size. I ex-
plore various values of the recombination rate, mutation rate and sample size.
For each combination of parameters I generated 100 data sets. Likelihoods
were calculated for a range of values of ρ under each scheme and then approx-
imate maximum likelihood estimates (MLEs) of ρ were derived from these
curves. As an initial summary I present the mean MLEs from each scheme
for the different parameter values, see Table 2.1. For small values of ρ this
table may well give an appropriate first summary of the performance of the
methods. For higher ρ, such as when the data were simulated with ρ = 1000,
there is a risk that the data contains much evidence for recombination and
there is no evidence for correlations between sites. This could cause a true
ML estimate of ρ to be extremely large, perhaps infinite. In practice the
schemes seemed to underestimate ρ when the true value was very large and
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only in one case was the maximum tested value (ρ = 108) not outside the 2
log likelihood range for some of the schemes. However, this problem makes
it difficult to draw certain conclusions about the mean estimate of ρ for data
sets simulated with ρ = 1, 000.

As well as the mean estimates of ρ it is also interesting to consider the
variance of different estimators. As the estimators have significantly different
means it is perhaps more consistent to use the coefficient of variation to
measure this quantity (see Table 2.2 and Figure 2.2). A complication with
measuring the variation in these estimators is that the data itself is not very
informative for the underlying value of ρ. Although all of the data sets
in a given collection were simulated under the same parameter values, the
true maximum likelihood estimates of those parameters, in particular ρ, are
probably highly variable between data sets (see eg. [28, 21]).

It is important not only to produce point estimates of parameters but also
to give measures of uncertainty and a full picture of the posterior information
about the parameter of interest. As a statistic of the peakedness of the
likelihood curve I give the range of values of ρ for which the log likelihood is
within units of the maximum. I calculated the 2 log likelihood intervals using
a linear interpolation of the likelihood curves for the data (See Table 2.3).
Figure 2.3 gives a a fuller and more visual presentation of the distribution of
estimated likelihoods and the certainty associated for the data sets simulated
with ρ = 5, θ = 10 and n = 50.

Having calculated these approximate intervals and their average width
it is interesting to note how often the mean lies within these intervals, the
coverage. This is summarised in table 2.4.

The Variation in Estimates is Large

Having given a broad overview of the schemes it is worth taking a closer
look at various aspects of these analyses. First of all it is worth noting that
the numbers given here must be treated with care. Variation in estimates
appears to be very high between data sets, even for 200 sequences and θ = 10.
Both the coefficient of variation in estimates is high and the widths of 2 log
likelihood intervals are large. I have made some effort to reflect the accuracy
of estimates by reducing the precision to which some estimates are given
although I have decided to give more information if there is a chance that it
is meaningful and always give at least integer precision unless using scientific
notation. However, when assessment of the various methods is carried out it
is important to take care to appreciate the accuracy of these estimates.
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 1.6 0.41 0.45 0.73
1 10 50 2.7 1.2 1.3 1.9
5 10 50 6.4 3.9 4.2 6.0
10 10 50 11 3.2 5.4 12
50 10 50 38 14 23 48
1000 10 50 468 169 309 784
5 10 5 15 12 11 30
5 10 10 5.3 2.5 2.5 6.9
5 10 20 5.5 3.4 3.3 5.9
5 10 30 6.4 3.8 3.7 6.3
5 10 50 6.4 3.9 4.2 6.0
5 10 100 6.4 1.7 2.7 6.1
5 10 200 5.9 1.6 2.4 5.0
5 2 50 4 2 4 4
5 3 50 3 2 3 3
5 5 50 4.8 2.9 3.8 4.3
5 10 50 6.4 3.9 4.3 6.0
5 15 50 7.9 2.0 3.1 7.6
10 15 50 13 4.0 6.5 15

Table 2.1: Mean ML estimates of ρ under the four schemes. For each set of
parameter values 100 data sets were simulated and the schemes were run on
a grid of values for ρ. In each case a single set of 20 orderings were used for
all 4 schemes. The likelihoods were averaged over these 20 orderings. Some
of the simulations gave rise to extremely high variability in estimates of ρ.
For smaller values of θ the estimates must be treated with care. Also note
that the reported values for ρ = 1000 do not include one data set where the
likelihoods were extremely flat and all but the L2 scheme peaked at ρ ≥ 108.
There is a noticeable correlation between the value of theta under which
the data was simulated and the maximum likelihood estimates of ρ for all 4
schemes.
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 1.14 1.86 1.78 1.68
1 10 50 0.714 0.979 1.06 0.927
5 10 50 0.487 0.630 0.647 0.581
10 10 50 0.324 0.444 0.401 0.373
50 10 50 0.249 0.258 0.251 0.285
1000 10 50 1.43 0.32 0.27 0.26
5 10 5 7 8 9 5
5 10 10 0.9 1.1 1.6 1.2
5 10 20 0.60 0.81 0.89 0.73
5 10 30 0.61 0.71 0.76 0.67
5 10 50 0.487 0.630 0.647 0.581
5 10 100 0.40 0.53 0.47 0.45
5 10 200 0.40 0.57 0.56 0.51
5 2 50 1.70 3.52 2.60 4.60
5 3 50 1.02 1.62 1.37 1.52
5 5 50 0.80 0.92 0.88 0.85
5 10 50 0.487 0.630 0.647 0.581
5 15 50 0.646 0.722 0.696 0.580
10 15 50 0.348 0.431 0.455 0.433

Table 2.2: Coefficient of variation of ML estimates of ρ under the four
schemes. The coefficient of variation helps to adjust estimates of variability
for changes in mean estimates. However this is not a perfect summary of
variation as it can penalise methods which estimate small values of ρ when
the true value of ρ is close to zero. It is necessary to place these estimates in
the context of the corresponding mean MLE estimates.
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Figure 2.2: These histograms show the distribution of maximum likelihood
estimates of ρ under the 4 different schemes. The true values for these sim-
ulations were ρ = 5, θ = 10. There were 50 sequences in each sample. The
results show that there is wide variation in estimates between data sets but
also that there are strong systematic differences between the schemes. πF&D

and πR almost never overestimate ρ whereas the estimates from πL&S and
πL2 seem to be more evenly distributed around the true value.

50



Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 (0.30, 5.63) (0.0118, 3.15) (0.0104, 2.99) (0.0168, 5.37)
1 10 50 (0.789, 7.27) (0.193, 4.83) (0.202, 4.65) (0.292, 7.09)
5 10 50 (2.74, 12.9) (1.33, 9.56) (1.39, 10.5) (2.02, 14.9)
10 10 50 (5.79, 19.2) (1.27, 6.77) (2.33, 11.0) (5.24, 24.2)
50 10 50 (19.2, 57.5) (7.10, 22.3) (11.4, 37.2) (20.8, 76.0)
1000 10 50 (288, 106) (111, 106) (196, 106) (440, 2558)
5 10 5 (9, 126) (0.02, 195) (0.02, 76) (0.3, 221)
5 10 10 (1, 17) (0.3, 24) (0.3, 25) (1, 48)
5 10 20 (1.8, 13) (0.81, 10) (0.76, 10) (1.4, 19)
5 10 30 (2.5, 14) (1.1, 10) (1.1, 11) (1.8, 17)
5 10 50 (2.74, 12.9) (1.33, 9.56) (1.39, 10.5) (2.02, 14.9)
5 10 100 (3.09, 12.0) (0.579, 3.95) (1.08, 5.93) (2.35, 13.1)
5 10 200 (2.89, 10.7) (0.560, 3.53) (0.97, 4.89) (2.01, 10.5)
5 2 50 (0.3, 77) (0.04, 83) (0.1, 92) (0.06, 108)
5 3 50 (0.4, 17) (0.08, 16) (0.2, 22) (0.2, 28)
5 5 50 (1.37, 13.4) (0.518, 10.9) (0.773, 13.4) (0.797, 15.8)
5 10 50 (2.74, 12.9) (1.33, 9.56) (1.39, 10.5) (2.02, 14.9)
5 15 50 (3.89, 14.2) (0.746, 4.47) (1.29, 6.65) (3.12, 16.1)
10 15 50 (7.79, 21.4) (1.93, 7.46) (3.25, 12.1) (7.28, 26.9)

Table 2.3: This Table shows the average upper and lower bounds of intervals
constructed by taking all values within 2 log likelihood units of the maximum
likelihood value. Increasing the size of the data does provide less variable esti-
mates of ρ but even with 200 sequences these schemes showed high variability
in maximum likelihood values. The extremely large confidence intervals for
ρ = 100 amongst the first three schemes were caused by a single data set
where the maximum likelihood was finite but ρ = 108 was still within 2 log
likelihood units of the maximum value. In general the width of these confi-
dence intervals is disappointingly large as even the least variable estimates
suggest that estimation is accurate to within a factor of 5, or worse.
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 62 93 89 91
1 10 50 70 99 92 93
5 10 50 83 89 83 91
10 10 50 93 4 60 95
50 10 50 70 0 7 96
1000 10 50 12 1.1 4.4 89
5 10 5 89 96 65 100
5 10 10 85 87 74 94
5 10 20 84 83 76 91
5 10 30 84 87 85 88
5 10 50 83 89 83 91
5 10 100 86 19 66 92
5 10 200 88 8.7 42 87
5 2 50 92 92 95 98
5 3 50 92 86 93 94
5 5 50 90 81 87 93
5 15 50 77 30 71 86
10 15 50 81 14 70 81

Table 2.4: Coverage of the four schemes, as a percentage, for 2 log likelihood
intervals (given in Table 2.3). Although coverage is quite variable between
the schemes there are a range of reasons for this. The estimates given by
πF&D and πR are strongly biased downwards. While the scheme πL&S is, in
general, less biased the approximate 2 log likelihood intervals constructed in
this way are narrower than those for the scheme πL2 .
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Figure 2.3: Maximum Likelihood Estimates of ρ for 100 data sets (sorted by
MLE) with 2 log likelihood unit error bars. The data was simulated with 50
sequences θ = 10 and the true value of ρ = 5, indicated by the dotted blue
line.
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The Schemes always infer some Recombination

One clearly observable feature of all of the schemes examined here is bias.
First of all I examine the tendency of the schemes to estimate ρ > 0 even
when the true value is 0. It is hard, at first, to be certain that there is real
evidence of model misspecification here however. Given lack of information
in the data about ρ we would expect some variation and, as it is not possible
to underestimate ρ when the true value is zero, a positive bias will always be
observed - even for full likelihood methods. As it is impractical to compare
these results with an accurate full likelihood method other means of assessing
whether these estimates are appropriate to the data are required. It is worth
noting that under πF&D, πR and πL2 just over 1/3 of the MLEs were greater
than 0 while for πL&S more than 2/3 of estimates were greater than 0. Per-
haps more telling is to look at the proportion of the time that L(D | ρ = 0)
was more than 2 units of log likelihood from the MLE. Using table 2.4) it
can be seen that roughly 10% of the confidence intervals from πF&D, πR and
πL2 do not include 0, over 30% of those created using πL&S exclude ρ = 0. It
is, unfortunately, hard to be certain how excessive this proportion is. How-
ever, note that the estimates πF&D and πR have a downwards bias when ρ is
not close to zero. This means that their perhaps impressive performance in
the case of ρ = 0 is less useful as it merely reflects this general tendency to
underestimate ρ. Another subtlety with this analysis is that the 2 log likeli-
hood intervals vary considerably in size. Considering coverage in Table 2.4 it
seems that those confidence intervals using the Li and Stephens scheme are
somewhat too narrow (the values are low, even when taking into account the
fact that some estimates are not centered on the true value). The intervals
from πL2 are possibly too large. Taking this into account it still seems that
πL2 is less prone to estimating recombination rates far from zero.

Smaller sample sizes produce very poor estimates

It is important to know how the estimates change as various parameters of
the investigation change. The main ancillary aspects that I have explored
have been the sample size and the value of θ under which the data were
simulated. The most noticeable effect of reducing the sample size is to re-
duce the information in the data to such a degree that reliable estimation
becomes impossible. The analysis of data sets with 20 sequences or fewer can
give at best an indication of the underlying parameters, and the variance of
estimators is in practice infinite. A similar problem is found when θ is low.
It is hard to say precisely at what point θ becomes too small for effective
estimation because the number of segregating sites observed for any given θ
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is highly variable. One way to gain greater consistency in the information
contained in the data would be to fix the number of segregating sites. How-
ever simulation with a fixed number of segregating sites does not correspond
to a proper evolutionary model and may well lead to bias - especially when
methods that make use of information about the evolutionary time between
sequences are used. Another complicating factor is that the minor allele
frequency at each site has a large effect on whether that site is useful for
recombination rate inference. Many sites are largely uninformative as this
frequency is too small, or even singleton.

The Bias of the schemes changes with ρ and θ

For those values explored it seems that the value of θ under which the data
was simulated has a positive correlation with the estimates of ρ under all of
these schemes. In Li and Stephens’ paper [22] they reported a negative linear
correlation between the log of the average distance between sites and the bias
in ρ estimation, and a similar result may hold for all of the models. Also
shown in their paper was the tendency for the method to overestimate when
ρ was considerably less than 25 and underestimate when ρ was considerably
more than 25 - when the data comprised of 50 sites. Although bias is clearly
present in all of the algorithms it seems that πL2 is less susceptible to being
‘dragged towards’ a particular value and is more sensitive to the true value
under which the data were simulated.

There are Problems due to the Order Dependency of the Schemes

The PAC approach requires an arbitrary ordering to be assigned to the se-
quences in the sample. In order to circumvent this problem an average over
twenty such orderings has been used to calculate the likelihood curves for
this analysis. For each data set a single set of twenty orderings is used for
each of the schemes and for each value of ρ; in this way it is hoped that
the shape of likelihood curves will be retained and hence the ML estimates
will not be overly influenced by the particular (random) choice of orderings.
I now investigate how effective this strategy is at removing the problem of
order dependency from the estimates of ρ. In the following analysis I took
a single data set, the first of those simulated under ρ = 10, θ = 10 and
with 50 sequences. I analyse the variation in the likelihoods estimated at
the true value of ρ and also the variation in the maximum likelihood esti-
mates achieved from different numbers of orderings. The first observation
is that there is extreme variation in the likelihoods achieved from different
orderings. In particular there are a small number of likelihoods which far
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Scheme πL&S πF&D πR πL2

Mean -276 -259 -256 -256
Variance 7.8 4.4 4.3 4.5

Table 2.5: The means and variances of the log likelihoods from Figure 2.5.
There is greater variation in the likelihoods generated by πL&S than under
the other schemes. This means that the likelihood curves under πL&S will be
more greatly influenced by one large likelihood curve than under the other
schemes. This means that the maximum likelihood value will be strongly
influenced by one very likely ordering. Notice that, as shown in Table 2.2,
the scheme does not show greater variation in likelihood estimates.

exceed the values of the majority. Figure 2.4 shows that with a likelihood
curve generated using 2,000 independent orderings only a small proportion of
these make a significant contribution under any of the schemes. This seems
to be most extreme in the case of πL&S where the 5 biggest likelihoods appear
to account for more than 80% of the height of the curve, so that the vast
majority of the 2,000 orderings make almost no difference at all.

Perhaps a cleaner method of describing the variation in likelihoods is
to examine the log likelihoods. Figure 2.5 shows the distribution of log
likelihoods for the four schemes. At first glance these distributions look
similar to a normal distribution. To check how well this distribution fits I used
q-q plots in Figure 2.6. The fit is not very good for πF&D, πR and πL2 which
show significantly less variation at upper tail than a normal distribution.
This indicates that the variance due to order dependency for these schemes
should be somewhat reduced as the likelihood will be effectively comprised
of a larger number of samples from the space of all orderings. The means
and variances of the log likelihoods shown in Figure 2.5 are given in Table
2.5.

There is Significant Variation even in the ML estimates of ρ

It may be that estimation of the likelihood itself is not of primary importance.
In this chapter the primary method of assessing these schemes is to estimate
the level of recombination in the data. To asses variation in likelihoods
I give the coefficient of variation in the ML estimates of ρ for a range of
numbers of orderings averaged over to create the likelihood curves (Table
2.6). To give a visual understanding of the effect of this variation Figure 2.7
gives a histogram of the variation in all four schemes over 100 independent
orderings of size 20. There is clearly substantial variation in the estimates
of ρ for all of the schemes. Table 2.6 suggests also that this cannot be easily
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Figure 2.4: The cumulative contribution to the total likelihood sorted in
ascending order when the likelihood is averaged over 2000 independent or-
derings. The same 2,000 orderings were used in all four schemes. Although
all of the schemes suffer from extreme variation in likelihood estimates the
plot for the scheme πL&S seems to indicate that even for 2,000 orderings
variation in likelihood estimates could be particularly significant.
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Figure 2.5: Histograms showing the distribution of the log likelihoods calcu-
lated for ρ = 10 for a single data set with 50 sequences.
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Figure 2.6: Normal Q-Q plots of the log likelihoods at ρ = 10 for a single
data set each. The grey line is the line y = x. Each point is a log likelihood
generated using one of 2,000 independent orderings of the data. The quan-
tiles of the distribution of log likelihoods is compared to those of a normal
distribution of the same mean and variance.
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Scheme πL&S πF&D πR πL2

No of Orderings
1 0.26 0.23 0.20 0.20
2 0.25 0.22 0.19 0.18
5 0.24 0.20 0.18 0.17
10 0.23 0.19 0.17 0.17
20 0.22 0.17 0.17 0.16
50 0.22 0.15 0.16 0.15

Table 2.6: Coefficient of Variation of Maximum Likelihood estimates of ρ
using different numbers of orderings. 2000 independent Likelihoods were
calculated for dataset 1, which was simulated using 50 sequences and ρ = θ =
10. 500 subsamples of sizes between 1 and 50 were taken (with replacement)
and likelihood curves generated from an arithmetic average of the individual
values.

removed by increasing the number of orderings. However, increasing the
number of orderings does have a significant effect on the mean ML estimate
of ρ. Table 2.7 shows that for larger numbers of orderings the maximum
likelihood estimate of ρ is likely to fall. This is likely to be because most
orderings infer spurious recombination events and only a very small number
will avoid this (and those will have significantly higher likelihoods). This is
explained in section 2.4.

A Geometric Likelihood Average can significantly reduce MLE

Variation

When the ordering of sequences is viewed as missing data, analogous to a
genealogy in the coalescent setting, it makes sense to take the arithmetic
mean of the likelihoods over orderings. However, it is possible to introduce
attractive properties for estimators using alternative approaches. For exam-
ple the variation in ML estimates of ρ can be substantially reduced by taking
a geometric average of the likelihoods from each ordering. This can be seen
in Figure 2.8. The reason for this is that when the arithmetic average is taken
the likelihood curve is often overwhelmed by one ordering that resulted in a
significantly higher likelihood than any of the others (see Figure 2.4). This
weights the estimator heavily towards the maximum likelihood value of ρ
for that ordering, and that increases the variance in the estimate. When
geometric averages are taken this hugely flattens the difference in likelihoods
for different orderings and so each ordering contributes a much more signif-
icant proportion of the total. This then leads to a significant reduction in

60



πL&S

ρ

F
re

qu
en

cy

0 5 10 15 20

0
10

20
30

40
50

πF&D

ρ

F
re

qu
en

cy

0 5 10 15 20

0
10

20
30

40
50

πR

ρ

F
re

qu
en

cy

0 5 10 15 20

0
10

20
30

40
50

πL2

ρ

F
re

qu
en

cy

0 5 10 15 20

0
10

20
30

40
50

Figure 2.7: Variation in Maximum Likelihood estimates given 100 indepen-
dent runs of 20 orderings on Data Set 1. These likelihood estimates were
generated by arithmetically averaging the likelihoods from each ordering.
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Scheme πL&S πF&D πR πL2

No of Orderings
1 10 4.1 5.5 12
2 9.7 4.0 5.3 12
5 8.9 3.9 5.0 11
10 8.7 3.7 4.9 11
20 7.8 3.5 4.7 11
50 7.3 3.4 4.6 11

Table 2.7: Mean Maximum Likelihood Estimates achieved using different
numbers of orderings to calculate the likelihood surface (with arithmetic
averaging of likelihoods) for data set 1.

Scheme πL&S πF&D πR πL2

No of Orderings
1 0.26 0.23 0.20 0.20
2 0.19 0.17 0.15 0.14
5 0.12 0.11 0.10 0.096
10 0.087 0.076 0.092 0.070
20 0.064 0.037 0.091 0.046
50 0.043 0.0056 0.089 0.019

Table 2.8: Coefficient of Variation of Maximum Likelihood estimates of ρ
for the first data set simulated under ρ = θ = 10 using different numbers of
(geometrically averaged) orderings.

the variance of the estimators. The coefficient of variation for geometrically
averaged likelihoods can be seen in Table 2.8. It is also worth noting that the
mean maximum likelihood estimators do not change significantly with higher
numbers of orderings when geometric averages are taken (Table 2.9). This
can probably be explained as most orderings produce lower likelihoods and
higher estimates of ρ with some orderings producing significantly higher like-
lihoods and significantly lower estimates of ρ (as explained in section 2.4).
The overall effect of this on arithmetically averaged likelihoods is that for
higher numbers of orderings the maximum likelihood estimate of ρ decreases
but the variance of the estimator decreases slowly. When geometric averag-
ing is used the likelihood makes little difference and those orderings with low
likelihood overwhelm the results from more likely orderings.

The reduced variation produced by taking the geometric mean of the like-
lihoods produced by different orderings of the samples motivates an analysis
of the estimators produced in this way. Tables 2.10 - 2.13 show the ba-
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Figure 2.8: Variation in Maximum Likelihood estimates given 100 indepen-
dent runs of 20 geometrically averaged orderings on Data Set 1.
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Scheme πL&S πF&D πR πL2

No of Orderings
1 10 4.1 5.5 12
2 10 4.1 5.5 12
5 10 4.1 5.5 12
10 10 4.1 5.4 12
20 10 4.0 5.4 12
50 10 4.0 5.3 12

Table 2.9: Mean Maximum Likelihood Estimates achieved using different
numbers of orderings to calculate the likelihood surface (with geometric av-
eraging of likelihoods). Values calculated for the first data set simulated
under ρ = θ = 10. Note that there is great variation in the estimates between
data sets and that average estimates can be found in table 2.10

sic properties of this estimator in the same format used for those estimates
acquired using an arithmetic average.

Different methods of averaging over orderings provide the possibility to
reduce the variance in estimates of ρ caused by the order dependency of the
PAC likelihood. I have explored the possibility of using a geometric average of
the likelihoods. This is highly effective at removing the variance in maximum
likelihood estimates of ρ due to order dependency. The relative performance
of the two averages is assessed through summaries of these estimates and
there are reasons to be skeptical about taking a geometric average.

There is a notable upwards shift in ML estimates of ρ. This is because
orderings which require more recombinations are often less likely and under
an arithmetic ordering these have little impact on the overall estimate; under
a geometric average this effect is vastly reduced. This shift in estimates
results in a reduction in the coverage of the estimators and this indicates
that these estimates are of lower quality. This effect is most severe when the
data were simulated under small values of ρ and in these cases the estimates,
especially under πL&S are very high. Finally, if the PAC approach is taken
as a model for evolution then the orderings represent missing data. In this
case an arithmetic average approximates the sum over all of the missing data
and is thus easily justified. It is much harder to provide a theoretical basis
for taking a geometric average over the sampled orderings.

The Scheme πL&S is significantly faster than the alternatives

Methods which approximate the likelihood of recombinant population data
have a wide range of potential applications. In some applications the compu-
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 3.43 0.36 0.49 1.19
1 10 50 4.7 0.90 1.1 2.8
5 10 50 8.6 2.5 3.2 7.8
10 10 50 13 4.3 5.9 14
50 10 50 42 17 25 56
1000 10 50 514 723 414 851
5 10 100 8.2 2.5 3.2 7.2
5 10 200 7.65 2.5 3.0 6.6
5 5 50 6.9 2.0 2.6 6.1
5 15 50 9.7 2.7 3.4 8.3

Table 2.10: Mean ML estimates of ρ when geometric averaging is used. These
values are the means of those estimated over all 100 data sets for each of the
parameter values shown.

Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 0.688 1.56 1.67 1.50
1 10 50 0.547 0.837 0.959 0.827
5 10 50 0.436 0.557 0.598 0.559
10 10 50 0.301 0.360 0.368 0.351
50 10 50 0.232 0.245 0.243 0.266
1000 10 50 1.30 6.88 2.35 0.27
5 10 100 0.31 0.40 0.45 0.39
5 10 200 0.318 0.382 0.397 0.400
5 5 50 0.74 0.93 0.89 0.85
5 15 50 0.286 0.436 0.467 0.423

Table 2.11: Coefficient of variation of ML estimates of ρ using geometric
averaging
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 (0.82, 8.99) (0.0171, 2.09) (0.0317, 2.54) (0.0709, 6.124)
1 10 50 (1.53, 10.9) (0.136, 3.01) (0.171, 3.79) (0.460, 9.21)
5 10 50 (3.97, 16.6) (0.87, 5.51) (1.12, 7.63) (2.74, 18.0)
10 10 50 (5.18, 20.8) (1.21, 7.43) (1.54, 10.2) (4.02, 23.0)
50 10 50 (22.5, 61.4) (11.0, 26.4) (14.6, 39.2) (33.1, 92.5)
1000 10 50 (316, 106) (150, 106) (201, 106) (477, 2678)
5 10 100 (3.03, 13.1) (0.508, 4.58) (0.334, 6.03) (1.53, 12.8)
5 10 200 (2.78, 12.5) (0.588, 4.39) (0.62, 5.42) (1.33, 11.9)
5 5 50 (2.25, 17.6) (0.39, 6.58) (0.529, 8.78) (1.29, 20.0)
5 15 50 (5.00, 17.1) (0.343, 5.05) (0.221, 6.59) (3.47, 17.4)

Table 2.12: Width of 2 log likelihood intervals when geometric averaging
used

Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 27 92 90 86
1 10 50 48 95 94 83
5 10 50 69 60 75 83
10 10 50 90 16 69 93
50 10 50 82 0 11 95
1000 10 50 13 4 4 95
5 10 100 74 48 76 86
5 5 50 90 52 70 93
5 15 50 52 58 79 73

Table 2.13: Coverage of the various estimators, given by percentage.
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Scheme πL&S πF&D πR πL2

n Length
5 5 0.005 0.0095 0.018 0.013
5 20 0.011 0.038 0.084 0.13
5 50 0.016 0.056 0.15 0.83
5 200 0.063 0.23 0.63 18
20 5 0.042 0.22 0.35 0.19
20 20 0.087 0.40 1.0 2.6
20 50 0.19 0.97 2.7 18
20 200 0.79 4.1 11 334
50 5 0.164 0.67 1.6 1.8
50 20 0.50 2.8 6.8 16
50 50 1.3 6.6 18 105
50 200 4.5 26 69 213
200 5 2.5 12 28 19
200 20 7.6 49 119 279
200 50 18 109 284 1771
200 200 65.9 400 1074 34964

Table 2.14: Time taken, in seconds, for each of the schemes to calculate a
single likelihood using 20 orderings.

tational efficiency of the algorithm will be of primary importance. Assessing
the processing time required for these Hidden Markov Model based meth-
ods is straightforward as, for a given number of sequences and number of
segregating sites, the same set of calculations is performed regardless of the
data itself. Some features of the computational burden of each of these al-
gorithms are theoretically straightforward: The Li and Stephens algorithm
(πL&S) is linear in the number of segregating sites but quadratic in the num-
ber of sequences. The same holds for the scheme of Fearnhead and Donnelly
(πF&D) and our scheme πR. However there are four times as many states
under πF&D and so it takes four times as long. Under πR four calculations
must be made for each of those under πF&D so πR roughly a factor of four
slower again. The explicit block-wise approach πL2 takes time quadratic in
the number of segregating sites, hence its name. I used a Windows XP dual
Pentium 4 (1.8GHz) PC to create the empirical times in Table 2.14. These
give a summary of the time that each of the schemes takes to calculate the
likelihood of a single data set for a selection of data sizes.
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The Causes of Order Dependency and aspects of Bias

Unfortunately all of the models suffer from two major problems. Firstly,
the likelihoods depend on an arbitrary ordering assigned to the haplotypes.
Secondly the estimates of ρ obtained are biased. In order to further develop
these models, it is important to understand how the approximations made
lead to these symptoms.

I start by illustrating where the order dependency in haplotypes orig-
inates, although the likelihoods are comprised of a dynamic sum over all
possible mosaics, much can be gained by considering the minimum number
of events required to produce a specific configuration. Observe that in Figure
2.9 the ordering on the right requires a greater number of mutations or the
same number of mutations and a recombination event. This ordering will
then have a lower likelihood but one which improves as ρ increases, as the
recombination event becomes more likely. Under the coalescent there is no
ordering of sequences and the data set in Figure 2.9 requires only two events
- two mutations. Figure 2.10 gives an example genealogy which achieves this,
the tree gives rise to all three types with only two mutation events. Unfor-
tunately the PAC model contains no information about tree structure and
the parameters of these models cannot capture the subtleties that different
topological situations can create. The lack of genealogical information in the
PAC approach leads to the need to allow for many repeat or back ‘muta-
tions’ at a single site. This leads to the unfortunate situation that the PAC
scheme cannot recognise when, under the infinite sites model, the data are
incompatible with a single tree, as in Figure 2.11 as such configurations can
be explained by repeat mutation. Finally, there exist data sets which are
compatible with a tree but for which there is no ordering under the PAC
approach which does not require either repeat mutation or recombination.
A simple data set consisting of 3 sequences each with a singleton mutation
has this property, under the PAC approach the data always requires either
four mutations or three mutations and a recombination event. In contrast,
under a genealogical model three mutation events would normally be the
most likely explanation.

Another consequence of the PAC approach being unable to distinguish
between situations such as in Figures 2.11 and 2.9 is that it makes the pa-
rameter θ, which mimics mutation by allowing the copying process to change
types, crucial to the ML estimate of ρ. If θ is set very low then the copying
process will require too many recombinations, as in Figure 2.9. However if
θ is set too high then the PAC model will not infer recombination even in
cases such as in Figure 2.11. This effect explains the strong downwards bias
of the πF&D and πR schemes: examining the likelihoods from these schemes
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Figure 2.9: These represent two orderings of a simple data set. The colours
represent allelic state. On the left hand side it is possible to obtain the second
haplotype by copying the first sequence and employing a single mutation
event. The third can then be obtained in the same way from the second
haplotype. However, on the right hand side, the same data set in a different
order, the second sequence requires two mutations when copying from the
first but the third sequence is not identical to either of the first two and
so either a recombination event or mutation event is required to produce it.
When the recombination rate is not much smaller than the mutation rate
this can lead to an inflated number of recombination events.

suggests that they effectively have a higher θ. Evidence for this is that like-
lihoods for data sets with many mutation events are higher under πF&D and
πR than under πL&S and πL2 , however likelihoods for data sets where most
sequences are identical at most of the observed sites are lower under πF&D

and πR. The higher mutation rate leads to the situation that these schemes
give more weight to repeat mutation events and less to recombination events,
leading to a lower ML estimate of ρ.

Haplotypes are Unordered in the True Ancestral Process

There have been attempts to improve the method by somehow choosing ‘bet-
ter’ orderings for the sequences (various private communications), although
this work has not been published. Although such approaches may seem ap-
pealing at first there are a number of reasons to believe that they cannot
provide us with a solution to the current problems with the PAC approach.

Firstly, consider large data, such that across the region there are likely to
have been many recombination events on each sequence in the past. In this
case, even if a natural ordering could be found in small regions of the data,
the evolutionary relationships between the sequences will change drastically
across the data, so that any such relationship would be likely to break down
over distance. Secondly there exist simple data sets for which all orderings
give precisely the same results but in which recombination may be falsely
inferred, an example is shown in Figure 2.12.
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Figure 2.10: A simple coalescent history which is consistent with the data
set in Figure 2.9. The blue discs represent mutation events to the blue type.

Figure 2.11: This simple data set depicts an incompatibility between two
sites. A pair of sites is incompatible (with a tree) if, under the infinite sites
assumption, it is impossible to construct a joint evolutionary history for the
sites without at least one recombination event. In this case, if we were to
trace these lineages back to a common ancestor, the next event backwards
could not be be a coalescence event as no pair of sequences is identical. Under
the infinite sites model the next event cannot be a mutation as there are no
singleton alleles. Therefore the next event, backwards in time, in the history
of this sample must be a recombination event.
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Figure 2.12: This data set is compatible with a tree under the infinite sites
model, the data arises as the result of 3 mutations, one on each lineage before
any coalescence events have occurred. Under the PAC model 4 events are
required to explain this data. Two mutation events are needed to derive the
second sequence from the first. Also either 2 further mutations or a mutation
and a recombination are required to derive the third sequence from the first
2. This is independent of the ordering of sequences used.

2.4.1 Discussion

The PAC approach has provided an extremely powerful new tool for analysing
population genetic data in the presence of homologous recombination [29, 30,
23, 31, 32]. By approximating the ancestral process and imposing a Markov
structure along the sequence, calculating the likelihood of large data sets has
become computationally tractable. Unfortunately the lack of a genealogical
structure causes certain configurations in the data to be incorrectly inter-
preted. This leads to an order dependency in the likelihoods and the problem
that estimates of parameters depend on which orderings of the sequences are
used. Furthermore the schemes produce biased estimators and this bias is
complex, depending on a range of factors. The schemes cannot distinguish
incompatibilities from high frequency minor allele frequencies and this leads
to the inability to accurately estimate ρ, especially when there are extreme
amounts of recombination in the sample.

Of the alternative schemes proposed here all of them suffer similar prob-
lems to those of πL&S, also πF&D and πR seem to suffer from a strong down-
wards bias. However, despite this, these models may in fact be more accurate
models of the evolutionary process as the full nature of the bias is not yet
understood. The performance of πL2 appears to be slightly better than that
of the other schemes, it’s performance seems to be most consistent across the
range of values of ρ and it rarely rejects the true value of ρ more often than
expected. Unfortunately this scheme is computationally more expensive, es-
pecially when there are many segregating sites. In a large scale analysis the
data would have to be broken into parts to retain efficiency.

To significantly improve these schemes I believe it will be necessary to aug-
ment this approach with information about topological constraints. Either
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Figure 2.13: A diagram to explain a genealogical subtlety that affects the
PAC approach - the ‘data’ shown is (the second ordering of) that in Figure
2.4. This diagram shows a genealogy constructed by first creating a coa-
lescent tree for the first two sequences, and then augmenting this tree with
the third sequence, as indicated by the arrow. The coloured discs on the
genealogy indicate the branches and times of mutations to the type indi-
cated by that colour. Given the genealogy it can be seen that although the
third sequences has a different type to all previously sampled sequences no
recombination or further mutation need be employed to explain its existence.
There exist many algorithms that can propose approximate local genealogies
given sequence data (eg. Neighbour joining techniques, or the method of
Mailund (unpublished)). Perhaps it is possible to create a copying scheme
whereby this information is used and repeat mutations/recombinations could
be more definitively identified. The key to improving inference is in utilising
the extra information given by the genealogies while maintaining the Markov
structure and computational efficiency of the schemes proposed here.

72



direct topological reconstructions or perhaps using incompatibility informa-
tion, such as estimates of the minimum number of recombination events (eg.
Rmin [33], RH [34]). However care must be taken to preserve the computa-
tional efficiency that makes the PAC approach so attractive.
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Chapter 3

A New Model for the Ancestry

of a Sample

3.1 Introduction

The coalescent, developed by Kingman [1], models the ancestry of a sample
of chromosomes from a large randomly mating population of fixed size. In
1983 Hudson [2] extended the model to include recombination and described
an Ancestral Recombination Graph, or ARG, which represents the full ge-
nealogy of a sample of recombinant chromosomes. These models give rise
to straightforward algorithms for generating genealogies backwards in time
and hence also for simulating population genetic data. Wiuf and Hein [35]
developed an alternative method for simulating coalescent genealogies which
recursively simulates successive coalescent genealogies, separated by single
recombination events, moving left to right along a sequence.

While there are straightforward methods for simulating from the coa-
lescent, inference under the coalescent is extremely challenging due to the
complexity of the space of ARGs [19, 24]. Of crucial importance is the abil-
ity to calculate the likelihood of the data, unfortunately there are no known
analytic expressions for calculating the likelihood even under the simplest
mutation models. Full likelihood Monte Carlo methods under the coales-
cent, such as those developed by Fearnhead and Donnelly [21] and Kuhner
et. al. [19] could potentially be used for inference under the coalescent with
recombination, however, these methods are so computationally expensive as
to be intractable for even moderate data sets. While inference under the
PAC model (see Chapter 2)) is very fast, much of the biological realism of
the coalescent process is lost. When used for recombination rate estimation,
the model gives rise to systematic bias. In addition chromosomes are consid-
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ered in a specific order, or set of orderings, and the likelihood is sensitive to
this ordering. The PAC approach is not a genealogical method and so is also
inappropriate for inference on the genealogies relating sample chromosomes.

In this chapter I investigate a new approximation to the coalescent: the
Sequentially Markov Coalescent, or SMC. This model is designed to closely
mimic the coalescent ancestral process. Under the SMC there are fewer
possible full ARG’s but there is no change to the state space of marginal
genealogies; the purpose of this is to provide a more efficient augmentation
of the data that can be used to calculate the likelihood.

3.1.1 Understanding the Difficulties of Inference under

the Coalescent

In developing approximations to the coalescent under which inference may
be more tractable it is useful to appreciate the reasons why calculation of
the likelihood under the coalescent is so difficult. Firstly, there is no known
expression for the likelihood without knowledge of the underlying genealogy.
It is therefore necessary to first augment the data with an underlying ARG
and it is then possible to calculate the likelihood of the data conditional
on that ARG. The unconditional likelihood can then be approximated as
an average over a large sum of such conditional likelihoods. However, a
direct implementation of this approach is not feasible using current computers
because the number of samples required for such an estimate to be accurate
is extremely large. This is partially because the state space of ARGs is huge
and so a thorough exploration requires many simulations. There is no upper
bound on the number of recombination events in the history of a sample and
this leads to an infinite number of possible topologies. Also the contribution
to the likelihood varies enormously between simulated genealogies.

Mutation events provide information about the underlying genealogies.
Recombination events reduce our ability to identify the underlying genealogy
by breaking up the sequence into small regions each with different genealogies.
Unless the rate of mutation far exceeds the rate of recombination it is usually
impossible to gain any certainty about the underlying genealogy from the
data. Even in the case of an infinite mutation rate it is impossible to detect all
of the ancestral recombination events, and hence elucidate the full topology
of the ARG (see Figure 3.1).

This problem can be viewed as the result of a highly redundant augmenta-
tion of the data. In calculating the likelihood of the data, given genealogical
information, only the underlying marginal genealogies need to be specified.
However, there is an infinite number of ARG topologies that correspond to
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Figure 3.1: This diagram shows an example data set and, on the left a
parsimonious coalescent genealogy that explains the data. However, under
the coalescent with recombination there are alternative possible genealogies,
even under the infinite sites model; one possible alternative is shown on
the right. In this case the first event backwards in time is a recombination
event which splits sequence 2 into two halves somewhere to the left of site 3.
Infinitely many alternative ARGs are possible.
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any set of marginal genealogies and these ARGs usually have very different
densities under the prior. This means that a thorough likelihood calcula-
tion must simulate many ARGs to approximate the likelihood of a single
set of marginal genealogies. Unfortunately, performing direct inference on
marginal genealogies is currently restricted as it is not yet possible to calcu-
late the density of a set of marginal genealogies under the coalescent.

3.2 The Sequentially Markov Coalescent

I propose a new model of the ancestral process, the Sequentially Markov
Coalescent (SMC), which closely approximates the coalescent but causes a
reduction in the state space. In particular, the SMC reduces the number
of redundant recombination events in each ARG. The model follows exactly
the scheme described in section 1.6.1 in Chapter 1with a simple modification.
Using the same notation let Xi(= ∪xi) be the set of all points at which Ci

has ancestral material, then the SMC is then defined by setting

Ii,j =

{
1 = if Xi ∩ Xj 6= 0
0 = otherwise.

That is, only pairs of lineages which both have ancestral material at at least
one site can coalesce in this process. The rate of coalescence is the same for
all such pairs regardless of the quantity of overlapping material.

The state space of ARG’s under the SMC is significantly reduced: there
are fewer possible coalescence events and the phenomenon of ‘trapped non-
ancestral material’ does not exist in this setting because the union of two
overlapping intervals (of ancestral material) is always itself an unbroken in-
terval (see Figure 3.2). Trapped non-ancestral material increases the instan-
taneous rate of recombination in the ARG and so under the SMC the number
of recombination events is also reduced ([36] contains the results of a sim-
ulation study to gauge this reduction in recombination events, see Figure
3.3). Note that recombination events in regions when part of a sequence
has reached its MRCA, but is flanked by regions which have not, are still
simulated. Despite the reduction in the state space of ARGs the state space
of marginal genealogies remains the same.
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Figure 3.2: The coalescent phenomenon of trapped non ancestral material.
Recombinations must be simulated within such material as such recombina-
tions affect the genealogies of ancestral material. On the left two chromo-
somes coalesce to create trapped material. All coalescence events in the SMC
are of the form on the right, where the intervals must overlap, hence trapped
non-ancestral material does not occur under the SMC.
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Figure 3.3: This graph shows the ratio of the expected number recombination
events in the ARG under the coalescent to the expected number under the
SMC for n = 2. The results were generated from 106 coalescent simulations
under both models.
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3.3 Simulating Recombinant Genealogies while

moving along a Sequence

While the process described for simulating coalescent genealogies backwards
in time has a simple Markovian structure, the spatial algorithm of Wiuf and
Hein [35] has a complex, non Markovian, structure; the distribution of the
next genealogy in the sequence depends on all previous genealogies. However,
simulating genealogies under the SMC while moving along a sequence has a
simpler, Markov, structure. In particular the following algorithm can be
used to simulate genealogies for n individuals while moving along a sequence
under the SMC.

Envisage a continuous sequence of unit length. Initiate the process by
generating a tree from the coalescent at position 0. (This is equivalent to
generating a genealogy according to the process in section 1.6.1 where ρ = 0).
Denote the total branch length in tree i by Ti.

To generate the i + 1th genealogy from the ith:

• Simulate dj ∼ exp(ρTi/2), the distance to the next recombination
event.

• If
∑i

j=0 dj ≥ 1 then stop. Otherwise draw a point on the existing
tree uniformly along the total branch length. Erase the portion of this
branch that is further back in time and denote the remaining branch
section by the term ‘floating lineage’.

• The floating lineage is then traced backwards in time until it coalesces
with one of the remaining branches in the tree. The rate of coalescence
at a given time is equal to the number of branches remaining at that
time. This time may be further back in time than the MRCA of any
previous tree. Having generated the i+1th tree it is no longer necessary
to keep track of the ith tree under this process. Note that under the
full coalescent process it is necessary to allow coalescence with a lineage
from any of the previous genealogies, not just the most recent.

I now show that the distribution of marginal genealogies is the same
under both the backwards in time process and the sequential algorithm. To
do this I first describe a slightly altered version of the backwards in time
algorithm, the SMC∗, in which recombination events are not simulated in
‘trapped’ material that has reached its MRCA. By this I mean material that
has reached its common ancestor, but is flanked by material which has not.
I claim that the distribution of marginal genealogies is the same under the
SMC and under SMC∗. The basic reasoning is as follows:
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Figure 3.4: Simulating genealogies under the SMC while moving along a
sequence. A recombination occurs on the first tree and the portion of the
branch above the recombination is erased. This branch then coalesces onto
the remaining branches.

1. Suppose material that has reached its MRCA is present in the ARG,
consider a single sequence, S, which contains such material. Denote the
left edge of this material by T1 and the right by T2. On all sequences
other than S there is only ancestral material at positions less than T1 or
at positions greater than T2. This is true whether or not such material
has also reached its MRCA.

2. This separation of ancestral material partitions the remaining sequences
into disjoint sets α, β and S itself. No sequence in α can coalesce with
a sequence in β.

3. The evolution of material at positions less than T1 is now independent of
material at positions greater than T2. That is, these sequences cannot
coalesce below their MRCA and events in one group do not affect the
rate of events in the other.

4. This leads to independent marginal genealogies in these two regions
and recombinations in the trapped material between these two regions
do not affect these genealogies.

Proof: Point 1 follows directly from the definition of the SMC, (see Figure
3.5). The SMC only allows coalescence events between lineages that share
ancestral material, and by 1 it is possible to construct α and β in point 2.
As these lineages cannot coalesce the rate of coalescence in one group is un-
affected by coalescence in the other. Similarly for all recombinant sequences
that are created by further recombination. It is possible for sequences to
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Figure 3.5: This diagram shows an example of material reaching its MRCA.
The grey rectangles denote sites which have now reached their MRCA. Note
that, as the MRCA is reached here, no other lineages in the sample can have
ancestral material at these points. Also under the SMC it is impossible to
create trapped non ancestral material, so there are also no lineages which
have ancestral material both to the left of T1 and to the right of T2. Hence
all lineages other than S contain ancestral material only on sites to the left
of T1 or to the right of T2. Lineage S itself is ancestral between T1 and T2

and so there is no trapped non ancestral material in the ARG.

coalesce with sequence S, but this also does not affect coalescence (or recom-
bination) rates within the subsets, so follows point 3. Point 4 follows directly
as recombination events in the trapped material do not alter the rates of
coalescence, and coalescence is the only process that affects the marginal
genealogies.

I now prove that the simulation of genealogies along a sequence is equiv-
alent to SMC∗.

Proof: To prove the result I consider a single abstract ARG and show that
the density function of this ARG is the same under both models. To begin
the proof I make some straightforward observations:

1. For a given ARG, the tree generated by the sequential process at a
particular locus is exactly the genealogy at that locus.

2. Under the backwards in time process the density of the ARG is the
product of the densities in each epoch.

3. The densities calculated in the sequential algorithm can be calculated
as the product of densities for each tree.

4. The densities in each tree in the sequential algorithm can be further
split into a product of densities for each epoch.
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By 3 it is then possible to collect all terms for a given epoch in the
sequential algorithm for comparison with the backwards in time process. To
prove the result it is sufficient to show that the densities in each epoch are
the same by 2 and 4.

To prove this result it is first worth noting some basic figures. Given a
coalescence event the probability that it is between any two specific branches
is 1

p
, where p is the number of pairs that could coalesce in that epoch. Also,

given that an event is a recombination, the probability that it occurs at a
particular position, x say, on a particular sequence is 1/L, where L is the
total amount of recombinant material in this epoch.

Also, the density function of an ARG (as it is a product of terms) can be
separated into two parts, the exponential terms and their coefficients. How-
ever, as shown above the coefficients are trivial as, for every coalescence event
the rate parameter λC = p cancels with the probability of choosing that par-
ticular pair of sequences. Also, the probability of choosing a recombination
at any one position cancels with the rate parameter λR = ρL to give a factor
of ρ. This means that the overall coefficient for a particular ARG is ρr where
r is the total number of recombinations in the ARG. This is also true in the
sequential algorithm (shown later).

Backwards in time Algorithm:

Consider an ARG with n leaves. Consider any epoch within this ARG and
denote the height from the beginning to the end of this epoch (not the time
in the tree in this epoch) by ti.

Denote the rates of coalescence and recombination in this epoch by λi
C

and λi
R respectively then the backwards in time algorithm has density

λi
E

λC + λR

.(λC + λR)e−ti(λC+λR) = λi
Ee−ti(λC+λR) (3.1)

where E is the event at the end of the epoch (at time
∑i

j=0 tj).
More explicitly: assuming p pairs of sequences are able to coalesce in this

epoch and the total amount of recombinant material is L. The contribution
from this event (of a coalescence between two particular sequences, or a
recombination at a specific locus on a particular sequence) to the total density
is then:

e−ti(p+ρL) if E is a coalescence (3.2)

ρe−ti(p+ρL) if E is a recombination (3.3)

Sequential Algorithm:

In the sequential case we break up the terms for each epoch into coalescence
and recombination terms. By definition the sequences able to coalesce in
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Trapped material 
created here

Epoch i

Epoch j

Epoch j

Epoch i

x2 x3x1

Figure 3.6: Simulating backwards in time (top) and sequentially (below).
The strikes through branches represent where recombinations occurred on
a tree. The dashed lines indicate the new lineages in each tree. Note
that the stem above the marginal MRCA in the middle tree corresponds
to material that has reached its MRCA. Recombinations are not simulated
in this region under either process. Denote the ‘width’ of the ith tree by
xi. In epoch i the total amount of recombinant material is, lineage by lin-
eage: [x1 + (x1 + x2 + x3) + (x1 + x2) + x3] in the backwards in time pro-
cess. In the spatial process (below) count the branches on each tree giving:
[3x1 +2x2 +2x3]. In epoch j the stem on the middle tree does not contribute
to the branch length (this corresponds to not simulating recombinations in
the trapped non ancestral material in the ARG above) hence both simula-
tions give a rate of [2x1 + 2x3].
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the backwards in time process are exactly those sequences which share at
least one site at which both sequences have ancestral material. Consider
two lineages from the ARG, in the sequential process these two lineages
will be visible on a single marginal tree, and hence contribute towards the
overall rate of coalescence, if and only if they share a site on which both have
ancestral material. Given that two lineages are visible on at least one tree in
the sequential process there is some minimal k such that Tk is the first tree
on which both are visible. If k = 1 then the in the construction of T1 these
lineages will contribute a factor of e−ti to the density in this epoch. If k ≥ 2
then in Tk one of the lineages will have recombined in an earlier tree and will
now coalesce back onto tree Tk. In this case also they will contribute a factor
of exactly e−ti . This term appears only once as only lineages that have just
recombined contribute towards the coalescence rate in a new tree. So, if the
rate of coalescence, in a particular epoch, in the backwards in time process
was p then in the spatial process exactly p pairs will have the opportunity to
coalesce in the spatial process. Giving an overall rate of

1.e−ti(p). (3.4)

The recombination terms are calculated in a fundamentally different way
under the sequential algorithm to the backwards in time algorithm. The
distribution of the distance to the next recombination event is exponential
of rate ρbj, where bj is the total branch length in tree Tj. Therefore the
contribution to the density for each tree, Tj, given a recombination distance
xj along the sequence from the last recombination point is:

ρbje
−ρbjxj .

Given that a recombination has occurred, the density of it occurring at
any specific point in the ARG is 1/bj. So, the density of a recombination
occurring at distance xj from the last recombination point and at a particular
point in the tree is:

ρe−ρbjxj .

As I asserted earlier this gives a coefficient of ρ for every recombination. I now
suppress this coefficient and consider only the exponential terms. Considering
the epoch in question, and a particular tree, Tj, this becomes:

e−ρ(tiβ
i
j)xj

where βi
j is the number of extant lineages in tree Tj and in epoch i, see Figure

3.6.
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Taking the product of these for all trees Tj gives

e−ρti(
∑

j βi
jxj). (3.5)

The contribution in the last tree is the probability of no recombination in a
tree, P (xj > the remaining length in the sequence); this is e−ρ(tiβ

i
j)xj . Note

that the root branches are not included in the βi
j. Informally it may be

helpful to imagine that each of the branches in the marginal trees has a
‘thickness’ equal to the stretch of sequence along to which this marginal tree
applies. Using Figure 3.6 as a guide it can be seen that the total amount
of material on a branch in the backwards in time process is then the sum of
thickness of all of the branches in the sequential process that represent this
branch. More formally, by point 1 at the start of the proof, the total amount
of recombinant material per branch in (3.5) is equal to the total amount of
recombinant material extant on the same branch, in this epoch, in the ARG
generated by the backwards in time process.

Hence the total amount of recombinant material, being the sum of the
amount on each branch, is the total amount of material in this epoch on the
ARG. Hence the exponential terms from considering recombination in this
epoch are

e−ti(ρL). (3.6)

Taking the product of the coalescence terms and the recombination terms we
get:

e−ti(p+ρL) if E is a coalescence

ρe−ti(p+ρL) if E is a recombination

exactly as in the backwards in time scheme. 2 .

An analogous result holds for the corresponding Markovd process where,
instead of marginal trees, ARGs representing the genealogy at the locus and
the d sites preceding it are constructed recursively. The lineages created
by recombination can then coalesce onto the ARG for this locus instead
of the marginal tree as above. This is equivalent to a backwards in time
process where lineages can only coalesce according to the following rule: L
can coalesce with L′ if and only if there exist loci i, j where L has ancestral
material at i and L′ has ancestral material at j with | i − j |≤ d.

The proof of this result is almost the same as the above. To see that
the coalescence terms match consider any epoch and any pair of lineages
which do not have material within d sites of each other. Then no two trees
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in the spatial algorithm will contain both of these lineages in this epoch so
there can be no contribution to the coalescence rate associated with this pair.
However any other pair of sequences will have a point at which both of them
are contained in a marginal tree that the spatial algorithm considers. As in
the first result this then gives a rate contribution of exactly 1.

The recombination terms can be collected in the same way, however note
that there is now also the possibility of trapped non ancestral material arising
from coalescence events that do not cause any locus to reach its marginal
MRCA. Continuous regions of this type of trapped material are restricted
to stretches no longer than d sites. The contribution to the recombination
rate in the backwards in time process by this trapped material corresponds
to the extra time in the tree provided by the spatial algorithm keeping track
of lineages up to d sites to the left of the current locus.

3.4 Comparison of the SMC and the Coales-

cent

In the previous section I defined a new model for the ancestral process under
which coalescence events are restricted. In order to assess the value of the
SMC it is necessary to compare the properties of it with those of the coa-
lescent. It is useful to consider both the properties of genealogies generated
under the SMC and the patterns of variation that these genealogies give rise
to.

Due to the Markov nature of the coalescent processes backwards in time
under both the SMC and the full coalescent, the marginal distribution of
genealogies for individual loci is unaffected by recombination events and is
precisely that of the simple coalescent (in the absence of recombination).
Therefore the only differences between the coalescent and the SMC lie in the
correlations between genealogies along the sequence and the consequences of
these correlations on data. To investigate the changes in these correlations
brought about by the approximation proposed here I investigate 3 quanti-
ties. First I consider the covariance in the tMRCA across a range of genetic
distances (measured in term of ρ). This partially addresses a natural concern
that, as the SMC is Markovian along sequences, when simulating genealogies
sequentially one would expect reduced correlation between marginal genealo-
gies separated by more than one recombination event. Secondly I investigate
the frequency of non Markovian patterns in the tMRCA along the sequence,
this attempts to provide a measure of how often the genealogy partially re-
verts to previous configurations under the coalescent. Finally I investigate

86



correlations between sites for data simulated under both the coalescent and
the SMC.

Covariance in the tMRCA: Although it is not yet known how to calcu-
late the joint distribution of the set of tMRCA’s under the SMC analytically,
accurate results can be obtained by simulation, as in Table 3.4. These results
indicate a reasonable relationship between the SMC and the Coalescent co-
variances and the SMC values seem to lie within a factor of 3 of those from
the coalescent.

ρ Coalescent tMRCA SMC tMRCA
0.1 1.066 1.025
1 0.599 0.458
2 0.377 0.239
5 0.152 0.068
10 0.059 0.023
20 0.022 0.007
50 0.0044 0.0027
100 0.0024 0.0013

Table 3.1: The covariance of the tMRCA at two sites on a chromosome under
the Coalescent and the SMC with n = 5. The results here are an average over
106 coalescent and SMC simulations for each value of ρ. For intermediate and
high recombination rates there is a significant reduction in the covariance in
the tMRCA. This is because regions separated by significant recombination
activity are less likely to coalesce under the SMC - reducing the correlations
in coalescence time.

Non-Markovian Behaviour in the Coalescent: The second approach
taken here is to try to quantify the scale of non-Markovian behaviour in the
coalescent [36]. I start by defining a genealogy as non Markovian when the
tMRCA of the sample at the loci 0 and 1 are equal but there is some locus,
0 ≤ x ≤ 1, such that the tMRCA at x is different. Define Q∗(n, ρ) as the
proportion of non Markovian genealogies conditional on the tMRCA at sites
0 and 1 being equal, for a given sample size, n and recombination rate, ρ.
Note that, as time is continuous, it is only possible for two loci to share
the same tMRCA when the most recent common ancestor is reached in the
same coalescence event at both loci. A non-Markovian event is therefore
impossible unless there is a coalescence event between lineages which have
no overlapping ancestral material. Hence under the SMC Q∗(n, ρ) is always
0.

The quantity Q∗(n, ρ) cannot be calculated analytically under the coa-
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ρ Q∗(2, ρ) Q∗(3, ρ) Q∗(5, ρ) Q∗(10, ρ)
0.1 0.0003 0.0006 0.0008 0.0009
1 0.023 0.041 0.057 0.0684
2 0.054 0.111 0.169 0.204
5 0.106 0.295 0.504 0.606
10 0.123 0.447 0.810 0.910
20 0.112 0.554 0.962 0.996
50 0.065 0.609 0.995 1.000

Table 3.2: The proportion of non-Markovian events conditional on the end-
points of the sequence having the same tMRCA. 107 coalescent runs were
used for each value of ρ. The large difference between n = 2 and larger
numbers of sequences is probably due to the fact that the majority of simu-
lations which had shared coalescence times at the beginning and end of the
sequences when ρ = 50 were simply very short genealogies and no recombina-
tion had occurred. This is much less likely for greater numbers of sequences.
Note that the proportion of simulations in which the tMRCA was the same
at both extremes of the sequences is very small (see Table 3.3) for high ρ
hence such genealogies are rare as a proportion of all simulations.

lescent so Monte Carlo simulations were used to generate Table 3.2. Note
that care should be taken when comparing the effects for different numbers
of sequences. Firstly, there may be non Markovian events in simulations in-
volving more than 2 sequences but that do not affect the tMRCA. Secondly,
for a given ρ per sequence, the total rate of recombination increases with
greater sample sizes as there is a greater quantity of ancestral material in the
sample.

The results in Table 3.2 imply that non Markovian behaviour is a signifi-
cant phenomena in coalescent genealogies. The effects seem to increase with
the number of sequences and Q∗ increases with ρ for more than 2 sequences.
However, Q∗ conditions on the end points of the sequences sharing a tM-
RCA, and the probability of this decreases with ρ. The highest proportion
of non Markovian effects was observed for n = 10 and ρ = 2 when 5% of
all simulations showed non this Markovian behaviour. It is likely that with
more sequences this number could increase.

Correlation Patterns in Simulated Data: The above results attempt
the gauge the effect of using the SMC model on simulated genealogies. It is
also important to consider the effect on patterns of variation that generating
genealogies under the SMC has. Note that the prior distribution of marginal
genealogies at any given locus is identical under the coalescent to under
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ρ P (2, ρ) P (3, ρ) P (5, ρ) P (10, ρ)
0.1 0.0003 0.922 0.913 0.908
1 0.023 0.508 0.462 0.444
2 0.054 0.309 0.261 0.243
5 0.106 0.114 0.0803 0.0724
10 0.123 0.0403 0.0245 0.0222
20 0.112 0.0119 0.0066 0.0062
50 0.065 0.0020 0.0011 0.0011

Table 3.3: The quantity P (n, ρ) represents the probability of the same tM-
RCA at the left and right edges of the sequence given recombination rate
ρ and with n sequences. To generate this table 107 Coalescent simulations
were used for each value of ρ.

ρ Coal mean r2 Coal var r2 SMC mean r2 SMC var r2

0.1 0.206 0.1201 0.204 0.1187
1 0.150 0.0759 0.145 0.0721
2 0.119 0.0531 0.114 0.0501
5 0.081 0.0281 0.079 0.0268
10 0.059 0.0165 0.058 0.0161
20 0.044 0.0101 0.043 0.0099
50 0.032 0.0058 0.031 0.0057
100 0.027 0.0043 0.026 0.0043

Table 3.4: The mean and variance of the r2 statistic under the coalescent
and the SMC. The results here are an average over 106 coalescent and SMC
simulations tracing the ancestry of 50 chromosomes for each value of ρ

the SMC. The distribution, in both cases, is exactly that the distribution
under coalescent process for a chromosome with recombination rate 0. It is
therefore only necessary to consider the correlation structure between sites
when assessing the effect of the approximation on data. The co-inheritance
of alleles in a population is referred to as linkage disequilibrium and measures
of linkage disequilibrium, such as r2 or D′ [37], are designed to quantify the
pairwise correlation structure of observed alleles. These distribution of these
quantities cannot be derived analytically under the coalescent but simulation
results can be found in Tables 3.4 and 3.5.

The distributions of both r2 and D′ under coalescent and under the SMC
are very similar which encourages the belief that inferences made under the
SMC may reflect well the conclusions that would be drawn under the full
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ρ Coal mean D′ Coal var D′ SMC mean D′ SMC var D′

0.1 0.410 0.2187 0.409 0.2183
1 0.375 0.2045 0.372 0.2037
2 0.353 0.1949 0.350 0.1944
5 0.321 0.1800 0.319 0.1797
10 0.296 0.1678 0.296 0.1682
20 0.274 0.1565 0.273 0.1565
50 0.249 0.1432 0.248 0.1428
100 0.235 0.1355 0.236 0.1360

Table 3.5: The mean and variance of the D′ statistic under the coalescent
and the SMC. The results here are an average over 106 coalescent and SMC
simulations tracing the ancestry of 50 chromosomes for each value of ρ

coalescent.

3.4.1 Discussion

The coalescent with recombination is a realistic model for the ancestry of
a random sample of chromosomes in a freely mating neutral population.
However, it is intractable to calculate the full likelihood for modern data sets
with current computing technology under the coalescent. I have proposed an
alternative model which reduces the ancestral state space and gives rise to a
simple Markovian structure when simulating genealogies along a sequence.

For a model to be useful for inference it is necessary that the model
provides a good approximation to the biological processes being explored. In
order to assess the validity of the SMC I have investigated the relationship of
the SMC to the coalescent, both in terms of the distribution of genealogies
and the resulting patterns of variation produced.

These results suggest that the SMC provides a good approximation to
the coalescent and hence, if inference under the SMC proves to be more
tractable, it could provide a sound alternative to the coalescent for under-
standing population genetic data. In the next chapter I discuss the possible
gains in efficiency that could be made when performing inference under the
SMC.
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Chapter 4

Using the SMC for Importance

Sampling

4.1 Introduction

In the previous Chapter I defined a new model for the genealogy of a sample
of genetic data, the Sequentially Markov Coalescent (SMC). In this Chapter I
investigate the potential for the SMC as a tool for inference, in particular the
relative efficiency of importance sampling under the SMC and the coalescent.
I calculate the likelihoods of one hundred data sets under both the coalescent
and the SMC given a range of values of ρ. To assess the value of the SMC in
this context I examine how closely the SMC likelihoods approximate those
of the coalescent and if there is any reduction in the computational burden
of calculating these likelihoods.

4.2 Importance Sampling

In this Chapter I introduce a genealogical importance sampler and use it
to perform inference on a collection of simulated data sets. The optimal
importance sampler generates samples according to the target distribution -
that is proposes genealogies according to their distribution conditional on the
data. In 2000, Stephens and Donnelly [20] proposed an importance sampler
which approximated this conditional distribution in the case of no recombi-
nation. In 2001 this method was extended by Fearnhead and Donnelly [21]
to include recombination. I follow the method of Fearnhead and Donnelly in
constructing an importance sampler to calculate the likelihood curves under
both the SMC and the Coalescent. The method generates a coalescent ge-
nealogy backwards in time until the most recent common ancestor is reached
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at all sites. The genealogy is constructed using the sample and is augmented
with mutations so that the probability of the sample configuration given the
augmented genealogy is 1 or 0.

I use the infinite sites model in my implementation of the importance
sampler. Extending this to a more general mutation model is straightforward.
However the infinite sites assumption provides a significant restriction on
the genealogies that can be generated and this reduction in the state space
reduces the computational burden of calculating the likelihood. Although the
infinite sites assumption will, in general, not hold it has previously been used
for inference in the presence of recombination (see eg. [17, 27, 38, 39, 40]).
Care must be taken in assessing whether or not this model is appropriate to
the organism and type of data in question. For example, given human SNP
data, the infinite sites assumption may be realistic - repeat or back mutations
will have occurred on only a small fraction of the sites in the data. Note that
in practice the importance sampler considers only those sites segregating in
the population so that each sequence consists of finitely many (segregating)
sites. This does not violate the assumption that the data were generated
from sequences with infinitely many sites.

The derivation of the importance sampling scheme that I give here is dif-
ferent in motivation to those given in the population genetics literature so
far [17, 21]. In their paper Fearnhead and Donnelly consider generating an
ARG backwards in time and say that rates of events backwards in time are
unknown for an optimal importance sampler. However they note that the
forwards transition rates are known and use Bayes rule to calculate the back-
wards transition rates. I consider it more natural to consider only backwards
transition rates under the coalescent process and do not define any forwards
process for generating ARGs. It is known how to simulate genealogies, back-
wards in time, under the coalescent with recombination in the absence of
data. However it is not known how to simulate such genealogies conditional
on data. The optimality of generating genealogies conditional on the data is
derived below.

Formally, I wish to calculate the probability of observing a particular
sample configuration, or data, D, and a set of parameters, ρ, θ: P (D | ρ, θ).
I calculate this quantity under the coalescent model and the SMC and use
exactly the same methodology to calculate in each case. For the sake of
simplicity I now use the shorthand P (D) to denote the probability of the
data, given the parameters ρ and θ under the relevant model. Importance
sampling can be used to calculate this quantity (see eg [41]) through the
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approximation

P (D) =

∫ ∞

t=0

P (D | G)P (G)dG

=

∫ ∞

t=0

P (D | G)P (G) ×
1

Q(G)
(Q(G)dG) (4.1)

≈
1

M

M∑

i=0

P (Gi)

Q(Gi)
P (D | Gi) (4.2)

where the Gi represent genealogies generated from the proposal distribution
Q(.). The optimal choice of Q(.), Q∗(.), proposes genealogies according to
the conditional distribution of genealogies given the data [20]. In fact, given
Q∗(.) defined by Q∗(G) = P (G | D) all genealogies generate exactly the
same importance weight, P (D). A simple proof of this follows: Consider one
sample genealogy from the distribution Q∗(.), G1. Then

∑

i

P (Gi)

Q(Gi)
P (D | Gi) =

P (G1)

Q(G1)
P (D | G1)

=
P (G1)

P (G1 | D)
P (D | G1)

=
P (G1)P (D)

P (G1, D)

P (D,G1)

P (G1)

= P (D).

(4.3)

Hence under Q∗(.) only one genealogy need be simulated to get a perfect
estimate of the probability of the sample, D. I refer to P (G | D) as the
target distribution. Note that the purpose of the SMC is not as a proposal
distribution for genealogies (indeed the support of SMC genealogies does
not contain the support of coalescent genealogies). Instead the proposal
distribution is a further approximation and when the SMC is employed the
target distribution is P (G | D) under the SMC model.

It is very hard to calculate the conditional density of a genealogy given
the data in one step. Fortunately, the coalescent process has a Markov struc-
ture when genealogies are simulated backwards in time. This enables sim-
ulation of genealogies conditional on the data by, at each point in time,
simulating the next event backwards in time according to P (E | D), the
distribution of events conditional on the data. This is because a geneal-
ogy, G, can be viewed as a sequence of events, (E1, . . . , Ek), that act on
the sample configuration at certain times in the past, (T1, . . . , Tk). That is
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G = {(E1, . . . , Ek), (T1, . . . , Tk)}. However the event sequence is sufficient to
define the sample configuration and, given the event sequence, there is no
information about the times at which the events occurred contained in the
data, so only the event sequence is changed by importance sampling. Now

P (E1, . . . , Ek | D) = P (E1 | D) × P (E2, . . . , Ek | E1, D)

= P (E1 | D) ×
k∏

i=2

P (Ei | (E1, . . . , Ei−1), D)

= P (E1 | D) ×
k∏

i=2

P (Ei | D(E1,...,Ei−1))

(4.4)

where DE1,...,Ei−1
denotes the transformed data after events E1, . . . , Ei−1 have

acted on it. This final equality holds as the Markov property ensures that
the distribution of the next event backwards in time is independent of all
previous events in the genealogy. Hence the probability of the data, given
the next event backwards in time, P (D | E), is equivalent to the probability
of the data as transformed by event E, P (DE). That is

P (D | E) = P (DE). (4.5)

It is therefore possible to calculate the likelihood of the data by simulating
a sequence of events, each conditional on their distribution given the set of
haplotypes as altered by the previous events simulated. Genealogies can then
be generated iteratively according to:

P (E | D) =
P (D | E)P (E)

P (D)

=
P (DE)P (E)

P (D)
. (4.6)

To calculate the quantities P (D) or P (DE) it is necessary to simplify Equa-
tion 4.6, this is done in turn for each of the three event types: coalescence,
recombination and mutation. Let D = {h1, . . . , hn} and first consider a co-
alescence event between (without loss of generality) haplotypes h1 and h2 in
the sample at the current epoch in the simulation. Then

P (D) = P (h1, . . . , hn) = P (h1, h2 | h3, . . . , hn)P (h3, . . . , hn)

and
P (DE) = P (hC | h3, . . . , hn)P (h3, . . . , hn)
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where hC is the haplotype created from the coalescence of h1 and h2 (note
that this need not be equivalent to either h1 or h2). It is then possible to
write

P (DE)P (E)

P (D)
=

P (hC | h3, . . . , hn)P (E)

P (h1, h2 | h3, . . . , hn)

=
P (hC | h3, . . . , hn)P (E)

P (h1 | h2, h3, . . . , hn) × P (h2 | h3, . . . , hn)
. (4.7)

Now suppose that E is a mutation event on haplotype h1 creating haplo-
type hM . Then

P (DE)P (E)

P (D)
=

P (hM | h2, . . . , hn)P (E)

P (h1 | h2, . . . , hn)
. (4.8)

Consider a recombination on haplotype h1 event between sites j and j + 1.
Then let h1,<j denote the haplotype identical to h1 at site j and all sites to
the left of j, h1,<j is given non ancestral sites (which have no allelic state) to
the right of site j. Define h1,>j as the complementary sequence: non ancestral
at site j and those to the left of j and taking the values of h1 at site j + 1
and those to the right of j + 1. Then

P (DE)P (E)

P (D)
=

P (h1,<j | h2, . . . , hn)P (h1,>j | h1,<j, h2, . . . , hn)P (E)

P (h1 | h2, . . . , hn)
. (4.9)

The complete collection of weights must be normalised as the relative likeli-
hoods calculated are approximations.

Under the coalescent even the quantities above cannot be calculated effi-
ciently, so approximations must be used. In their paper Fearnhead and Don-
nelly used a Hidden Markov model for the data with a finite sites model. This
model is the progenitor of the models used in Chapter 2 and is the scheme
on which πF&D from that Chapter is closely based. In order to approximate
the quantities in Equations 4.7-4.9 I take a similar approach employing the
scheme πL&S, created by Li and Stephens and described in Chapter 2. The
full implementation of this scheme is presented in the next section.

4.2.1 Implementing the Method

Having outlined the Importance Sampling approach I now describe the spe-
cific implementation used here and discuss some of the various difficulties
and the decisions that must be taken in producing a genealogical importance
sampler. I lead the reader through the simulation of a simple genealogy and
describe the calculations that must be performed at each stage.

95



Given a data set it is first necessary to decide on the parameters of the
simulation. The first important parameter is the mutation rate, θ. Although
it is possible to co-estimate θ using the importance sampler such an approach
would greatly increase the parameter space. Instead, as computational ef-
ficiency is of such importance, I use Watterson’s estimate of θ [42] as it is
extremely fast to calculate and the estimates of ρ did not seem sensitive to
small perturbations in θ. Secondly, a recombination parameter, ρ, must be
specified. This will normally be specified by the user. For simplicity I as-
sume constant recombination rate here, although the extension of the model
to an arbitrary recombination map is trivial (inference could become much
harder). Note that exploring the state space of all maps would be extremely
computationally expensive and without some severe restrictions on the type
of variation would be impractical with these methods at present.

Next the (prior) instantaneous rates of each type of event, and hence the
total event rate in the epoch must be calculated.

1. Coalescence: The coalescence rate is simply the number of pairs of
sequences that can coalesce

λC =
∑

i,j≤k, i6=j

IC(i, j), (4.10)

where IC(.) indicates whether a pair of sequences can coalesce under
the appropriate prior. Under the Coalescent model Equation 4.10 gives

λC =
∑

i,j≤k, i6=j

1 = k(k − 1)/2 (4.11)

where k is the number of extant sequences. Under the SMC it is nec-
essary to calculate which pairs of sequences share ancestral sites, then
λC is the total number of such pairs.

2. Recombination: In this sampler the sequences are modelled as discrete
with gaps of different sizes between sites, the recombination events
are forced always to occur precisely half way between each site. The
recombination parameter above specifies the total recombination rate,
per sequence, at the start of the simulation. This is then broken up
between each of the gaps between segregating sites according to the
distance between each pair of sites, the total length of each sequence is
defined as 1 for this purpose. The total instantaneous recombination
rate, λR, is then taken as the sum over all sequences:

λR =
k∑

i=1

ρ

2
× (dr,i − dl,i) (4.12)
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where dr,i and dl,i denote the right and leftmost boundaries of ancestral
material on the ith sequence respectively. Initially dl,i = 0 and dr,i = 1
for all i. The prior weight of a recombination event between sites j and
j + 1 on a given sequence is ρ

2
× δj where δj is the distance between

sites j and j + 1.

3. Mutation: A constant mutation rate is assumed and the mutation rate
is divided evenly between each of the (finitely many) sites. To obtain
the total instantaneous mutation rate, λM , requires a sum over every
site on every sequence:

λM =
k∑

i=1

L∑

j=0

θ

2L
× IM(j) (4.13)

where each sequence contains L sites (segregating in the population)
and IM(.) is an indicator function which takes value 1 when site j is
ancestral and 0 otherwise. The prior weight for each individual possible
mutation is θ

L
.

These formulae specify the prior rates of each event at a given time in the
history of the sample. This, in turn, provides the distribution of the type of
the next event. If the genealogy is also of interest then given the total rate
of events, λ = λC + λM + λR, it is possible to simulate a time, t ∼ Exp(λ),
to the next event. However, the likelihood of the data is independent of
this time and so I consider only the event sequence here. Having calculated
the prior rates P (E) in Equation 4.6 for each event it is then necessary to
estimate the relative probabilities of the data before and after each potential
event. First however it is possible to eliminate certain events by simple
observation. As an example, consider the data set in Figure 4.1. If the first
event backwards in time were a coalescence event between sequences 1 and
2 then their haplotypes would be the same. However, as this is not true
such an event would give rise to a genealogy, G, which gave P (D | G) = 0.
The importance sampler therefore never generates such events. Similarly,
under the infinite sites assumption each site can undergo mutation at most
once in the genealogy. Consequently mutation events can only occur at those
sites which contain a singleton in the sample. In practice it is necessary to
enumerate all of the possible events that could give rise to an infinite sites
genealogy that is compatible with the data. The only possible events for the
data in Figure 4.1 are:

1. A coalescence event between sequences C and D.

2. A mutation event at site one on sequence B.
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Figure 4.1: This figure shows all of the possible first events backwards in
time under the infinite sites model for this toy data-set.

3. A recombination event at any of the 8 gaps between the sites on the
sequences.

To calculate the weights given to each of these events by the importance
sampler it is necessary to go back to Equations 4.7 to 4.9. In order to
use these formulae an approximation to the quantity P (h∗|h1, . . . hk) for any
haplotype h∗ and set of existing haplotypes {h1, . . . , hk} is needed. In their
paper Fearnhead and Donnelly propose a dynamic programming method that
approximates these values. In Chapter 2 I investigate a range of methods
which approximate these likelihoods. Using the results obtained in that work
I decided to use the scheme πL&S as this scheme was by far the fastest and
the likelihoods are strongly related to those of the other approaches.

Note that in the following description I order the sequences in the equa-
tions such that h1 (and sometimes h2) are the sequences affected by the event
being considered, merely for notational convenience.

1. In order to apply πL&S to Equation 4.7 it is first necessary to construct
the sequence hC (from Equation 4.7) using the proposed coalescing
sequences (which I name h1 and h2). This sequence is defined to be
non-ancestral at all those sites where both h1 and h2 are non ancestral
and due to the restrictions on coalescence events the types of h1 and
h2 are identical at all sites where both are ancestral, so hC then takes
the types of h1 and/or h2 wherever these are ancestral. Note that
when recording these weights for the purposes of likelihood calculation
the coalescence weights must be multiplied by two. This is because
coalescing pairs are chosen in an ordered way, but there is no ordering
of the two sequences in coalescence events.

2. Similarly, in order to calculate πL&S(hM | h2, . . . , hk) the haplotype
hM must be constructed. This is achieved simply by altering h1 at the
appropriate site - so that it has the same type as the rest of the sample.
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3. In the case of recombination a further approximation is made. This is
important as there are usually many possible recombination events and
the quantity πL&S(h∗ | h1, . . . , hk) is expensive to compute. Using the
same notation as in Equation 4.9 I now make the approximation that

P (h1,<j | h2, . . . , hk)P (h1,>j | h1,<j, h2, . . . , hk) ≈

P (h1,<j | h2, . . . , hk)P (h1,>j | h2, . . . , hk). (4.14)

This is close approximation as h1,<j shares no ancestral sites with h1,>j

so only affects the distribution of h1,<j indirectly. However, this approx-
imation allows a very significant computational saving. As discussed
later I make the approximation that, in the dynamic programming al-
gorithm of πL&S, the probability of the type of a non ancestral site
given the rest of the sample is always 1. Note that intermediate val-
ues (or partial probabilities), P (h1 | h2, . . . , hn)<j, from calculating
P (h1 | h2, . . . , hn) in the dynamic programming algorithm correspond
to the probability of observing the partially ancestral sequence: h1,<j.
By creating a sequence h′

1 constructed by reversing sequence h1 the
quantities P (h1,>j | h2, . . . , hn) can be seen to be the partial probabil-
ities P (h′

1 | h2, . . . , hn)<(L−j). By storing these probabilities for each
j it is then possible to calculate the probabilities in Equation 4.14
using only the partial probabilities used in calculating πL&S(h1) and
πL&S(h′

1).

To choose from the possible events it is first necessary to normalise the quo-
tients from Equation 4.6 and then multiply them by their respective proba-
bilities under the prior.

To calculate the likelihood for each event it is necessary to record the
quantities P (E), the probability of E under the prior, and Q(E), the prob-
ability of E under the proposal distribution. Under both the prior and this
proposal distribution the probability of generating each genealogy is the prod-
uct of the probabilities of each event . Hence it is possible to calculate the
importance weight, P (E)/Q(E), for each event and take the product of these
as the importance weight for the whole graph. After each event it is then
necessary to update the sampler, the new haplotypes need to be created, the
new rates for each event must be calculated and any record of the genealogy
may need to be updated. An example sequence of events is given in Figure
4.2. Note that this sequence of events is not equivalent to an ARG, and if
the genealogy itself is of interest then that needs to be stored separately.
Given the sequence of events the probability of the sample configuration is
simply 1 as all mutations are specified and uniquely specify the data. The
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Figure 4.2: This diagram shows a full simulation using the importance sam-
pler. The colour grey indicates non ancestral material and the colour yel-
low indicates material that has reached its most recent common ancestor.
The letters C,M and R indicate Coalescence, Mutation and Recombination
events respectively. The sequence continues on the right hand side. Note that
events that occur in either non ancestral material or affecting sites which have
reached their most recent common ancestor need only be simulated if they
also affect ancestral sites that have not reached their MRCA. When calcu-
lating the likelihood simulation stops after the MRCA ancestor has been
reached at each site. Note that there may still be more than one lineage in
the ARG when this happens. Although, under the coalescent, it is possible
to simulate genealogies back to the single most recent common ancestor of
the whole sample this is not always possible under the SMC - there may
remain pairs of lineages which can never coalesce.
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contribution towards the likelihood (in Equation 4.2) for this genealogy is
then the importance weight P (G)/Q(G).

I now consider some of the technicalities with the above approach. The
most important consideration being how best to handle non ancestral mate-
rial in the scheme πL&S.

4.2.1.1 The problems with Non Ancestral Material

When a recombination event occurs backwards in time the sequence on which
it acts is split into two parts. One part carries the ancestral material from
the left of the breakpoint and the other from the right. The rest of these
two sequences contain material which is not ancestral to the sample. There
is no need to simulate events that affect only non ancestral material. Non
ancestral types are unknown, and in any given epoch non ancestral material
can be treated as missing data. An important question is then: how can we
calculate the likelihood of data when some of the types are unknown? In
particular, how can we calculate the quantities in Equations 4.7 to 4.9 in the
presence of missing genotypes? There are two distinct problems here, and
they are often concurrent.

1. What is P (h1 | h2, . . . , hk) when one or more of h2, . . . , hk contain
missing genotypes?

2. What is P (h1 | h2, . . . , hk) when h1 contains unknown types?

One way to tackle such questions is to impute the types at non-ancestral
loci. This is the approach taken by Fearnhead and Donnelly [21] in their
importance sampler. The imputed types are generated according to their fre-
quency in the remaining sample in the epoch considered. It is then possible,
due to the approximate model of sequence evolution used in their likelihood
calculations, to sum over all possible imputations.

The same approach is possible using the conditionals πL&S used here
but the approach of explicit imputation was not taken for this importance
sampler. In case 1, the probability of observing an unknown type at site j
given either a known type or an unknown type I used

Pr(H1(j)) =

{
1/2 if site j is still segregating in the sample
1 otherwise.

In case 2 I used
Pr(H1(j)) = 1. (4.15)

The question of how to calculate these likelihoods refers only to calcula-
tions in the proposal distribution. I attempt to find the best trade-off between
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Figure 4.3: These two data sets illustrate how imputing types at non ancestral
material based only on the frequency of that type in the sample might lead
to inaccurate imputed frequencies of types. The grey colour indicates non
ancestral material. On the left hand side the probability of observing the
blue type might reasonably be assumed to be 2/3. However on the right
hand side the rest of the haplotype structure indicates a higher probability
of a blue type as there is some evidence for linkage disequilibrium between
the first two sites and the third site.

accuracy and computational speed. The equations above provide two gains
in speed, firstly the frequency of each type at each site need not be calculated
after every coalescence or recombination event. More importantly, the extra
computational time of summing over all possible imputations adds a further
burden to the most computationally intensive calculations in the importance
sampler. It is worth noting that the approach of imputing types according to
the frequency of types where those are observed is itself an approximation.
The types at the missing data are, sometimes strongly, dependent on the
surrounding sequence. An example of this is given in Figure 4.3.

In order to understand the reasoning behind Equation 4.15 it is useful
to consider what is meant by P (h1 | h2, . . . , hk). This is the probability of
observing h1 given the already observed sequences in the sample. However,
we implicitly condition on having actually observed the types at h1. If we
consider the (unusual) question: What is the probability of observing the
unknown genotype at position j on h1 given that we were unable to type h1

at this locus? This leads to the standard missing data approach - and we get
a probability of 1.

A related problem, when considering the conditional probabilities from
Equations 4.7 to 4.9, is how to treat ancestral material that has reached its
MRCA. However in this case the MRCA has, by definition, been reached on
all sequences and so all of the types are the same. These sites therefore do
not contribute to the overall likelihood, and in the dynamic programming
algorithm this is achieved by using a emission probability of 1.
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4.2.2 Rephrasing the problem

Note that in the current formulation of the importance sampler the following
approximation is used to calculate the probability of the data:

P (D) =

∫
Q(G)

P (G)

Q(G)
P (D | G)dG ≈

1

M

M∑

i

P (Gi)

Q(Gi)
P (D | Gi) (4.16)

where the genealogies in the summation on the right are simulated from
Q(.). However, when the genealogies are augmented with mutation the data
is defined by the genealogy, so

P (D | Gi) =

=

{
1 if Gi gives rise to the data
0 otherwise.

This means that many of the terms in equation 4.16 are zero and this is used
to improve the efficiency of Q(.). It is not possible for the Q used here to
propose genealogies that do not give rise to the data. Technically this makes
Q an invalid proposal distribution, as the support of P should be contained in
the support of Q. However, the estimate is not affected as those genealogies
not in the support of Q will always supply 0 weight in the approximation.

However, it is possible to reformulate this method such that this tech-
nicality does not arise, and it leads to a possible improvement in efficiency.
Note that, by Equation 4.17

∫
P (G)P (D | G)dG =

∫

G∈Γ

1 × P (G)dG (4.17)

where Γ is the set of all genealogies that give rise to the data. In this for-
mulation the total state space is Γ, the genealogies are distributed uniformly
throughout Γ and the integral is that we wish to estimate is of the quantity
P (G), which represents the prior weight of that genealogy under the prior.
Importance sampling can now be used to approximate this new integral, so
that

∫

G∈Γ

P (G) × 1dG =

∫

G∈Γ

P (G) × Q(G)
1

Q(G)
dG ≈

1

M

M∑

i

P (G) ×
1

Q(Gi)

(4.18)
where the genealogies are sampled from Q(.), hence Gi ∈ Γ. Note that here
the importance weights are proportional to 1/Q(Gi). This formulation leads
to exactly the same estimate of the likelihood as in Equation 4.6.
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One method for improving the efficiency of an importance sampler (see
eg. [41]) is to replace 1/M in the sum on the Right hand side of Equation
4.18 by the sum of the importance weights. That is, proposing that

1

M

M∑

i

P (Gi)

Q(Gi)
≈

(
1/

M∑

i

1

Q(Gi)

)
×

M∑

i

P (Gi)

Q(Gi)
(4.19)

Although it is stated in Liu [41] that this estimator is only slightly biased
and that it is often a good approximation to the integral of interest this was
not found here.

Consider the optimal importance sampler, that is, Q∗(.) such that Q(G) ∝
P (G) (the prior probability of Gi), remember that the genealogies are re-
stricted to those which give rise to the data. Note that this is equivalent to
the optimal importance sampler in the first formulation because:

Q∗(G) = P (G | D) = P (D | G)P (G)/P (D)

=

{
P (G)/P (D) if Gi gives rise to the data
0 otherwise.

It can now be seen that this does not lead to a good approximation to
the likelihood as, substituting the optimal importance sampler into Equation
4.19 we get:

(
1/

M∑

i

1

Q(Gi)

)
×

M∑

i

P (Gi)

Q(Gi)
= P (D)/P (D) ×

∑M
i 1/P (D | G)∑M

i 1/P (G)P (D | G)

and as P (D | G) = 1 for all G in this case this becomes

M∑M
i 1/P (Gi)

. (4.20)

Thus this approximations suggests that a good estimate of the likelihood is
the reciprocal of the harmonic means of the prior densities of the genealogies
compatible with the data. However, it is easy to see that this is not a good
estimate, consider the approximation in 4.19, each of the terms Q(Gi)/P (Gi)
is an estimate of the probability of the data. For an optimal Q each of these
terms is in fact precisely P (D). However, in this case the expression on the
right hand side of the approximation gives:

(
1/

M∑

i

1

P (Gi | D)

)
×

M∑

i

P (D) =
M × P (D)∑M

i
1

P (Gi|D)

. (4.21)
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Given that P (Gi | D) ≤ 1, this requires P (Gi | D) ≈ 1 ∀i. Hence this is only
a good approximation to the P (D) when the genealogies are well specified by
the data. Unfortunately, in the presence of recombination, the data is highly
uninformative about the genealogies and the quantities Q(Gi) are generally
very small, this is true even under the optimal importance sampler.

4.2.2.1 An approach to improving efficiency

A natural approach to approximating the optimal importance sampler con-
siders every possible event backwards in time and chooses according to the
(approximate) distribution of events conditional on the data. However, calcu-
lating each of these approximate conditional probabilities is computationally
very expensive so, in their paper [21], Fearnhead and Donnelly propose a
simplification designed to reduce this computational burden. Instead of cal-
culating the full weights for all possible events they first choose a haplotype
according to the prior rate of events. More formally, denote the fraction of
sites on sequence hi that are ancestral by pm,i and let dr,i be the total recom-
bination distance on sequence i between ancestral sites. Also note that the
total number of sequences that hi can coalesce with is (k − 1). Fearnhead
and Donnelly then approximate the total rate of events involving hi by the
quantity

θ

2
pm,i +

ρdr,i

2
+

(k − 1)

2
. (4.22)

To choose a sequence they then normalise these rates to create a probability
of choosing each sequence. This method is not quite as accurate an approxi-
mation to the conditional probabilities as using the method so far described
as it does not condition on the data when choosing the sequence to take part
in the next event. I shall call this the Fearnhead approximation.

A technicality that arises from choosing haplotypes in this way is that
there are two potentially unequal routes to choosing each possible coalescence
event between two sequences, denote the two relevant sequences as h1 and h2.
In order to correct for this the coalescence rate in 4.22 is half of what might
have been expected with a coalescence rate of 1 for each of the remaining
k − 1 sequences. However, in itself this is not sufficient. It is necessary to
calculate the probability of generating this coalescence given that either h1 or
h2 were chosen. That is, if a sequence, h1, were chosen using the Fearnhead
approximation, and the event chosen for h1 were a coalescence event with h2.
It is then necessary to calculate all of the weights on h2, normalise these and
to calculate the probability of choosing h2 and then a coalescence event with
h1 given that h2 was chosen. Note that this correction cannot be ignored as
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Figure 4.4: The data in this diagram is fully compatible with a tree. When
the recombination rate is low the distribution of genealogies conditional on
the data should contain very few recombination events.

it is required to calculate the appropriate importance weight, and is not a
refinement to the proposal distribution.

I now investigate some of the properties of using the Fearnhead approx-
imation. I first consider the case of very small ρ and try to demonstrate
that the new approach may perform badly in here. First of all I consider
a completely artificial data set which illustrates why choosing a sequence
to act on without conditioning on the data has the potential to reduce ef-
ficiency. Figure 4.4 shows a data set with no incompatibilities. However,
when considering the first event while simulating a genealogy backwards in
time each sequence has an equal probability of being picked under the Fearn-
head approximation. Assume that the ancestral and derived types are not
known (the effect is more severe when they are, as only one sequence can
mutate, not two). No coalescence events are possible with this data as no
two sequences are identical. So, if any of the sequences from 2-5 are picked,
mutation events cannot be simulated as the infinite sites assumption allows
only singletons to mutate. Therefore recombination events must be simu-
lated when sequences 2-5 are chosen. However, when ρ ≈ 0 this is a very
poor choice of event. To gauge the effect this has on the importance sampler
I ran both the full conditional scheme and the Fearnhead approximation on
this data set. I simulated 10,000 genealogies under ρ = 1 × 10−9 and both
approximations calculated the log likelihood as -23.3. However, the average
number of recombination events under the Fearnhead approximation was 2.8
per simulation. These recombination events lead to considerable variation in
the likelihoods estimated. Under the full method not a single recombination
event was simulated and the estimates of the likelihood were very similar
between runs. The first ten likelihoods under both schemes are displayed
in Table 4.1. The full method took 77 seconds (for all of the runs) while
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Run Full Scheme Fearnhead Approximation
1 -24.8 -67.2
2 -24.8 -113.2
3 -24.3 -43.0
4 -24.6 -90.3
5 -24.3 -111.9
6 -24.0 -113.1
7 -24.2 -89.9
8 -24.3 -88.3
9 -24.3 -88.7
10 -24.6 -109.5

Table 4.1: The first ten likelihoods calculated under both schemes, the full
scheme and the Fearnhead approximation where a haplotype is first chosen
according to the prior rates of events. Although there is considerable vari-
ation in the likelihoods in the Fearnhead scheme they do converge to the
same likelihood as calculating the full scheme. However considerably more
genealogies must be simulated in this case in order to achieve convergence.

the Fearnhead approximation took only 49 seconds to calculate. For data
constructed in this way the Fearnhead approximation performs much worse
as more sequences are added. These data sets are not typical of population
genetic data or of data simulated under the coalescent. However, the Fearn-
head approximation performs similarly poorly for most data sets analysed
under small ρ, even those with incompatibilities.

The real purpose of these importance samplers is to analyse data in the
presence of significant recombination and so this comparison does not reflect
the true relative performance of the different approaches, it merely provides
an intuition into the differences between the two schemes and when one might
outperform the other. In fact, for higher values of the recombination rate
the Fearnhead approximation seems to outperform the full method quite
considerably. The time taken to simulate each genealogy is reduced, and
the variation in the likelihoods is also often reduced. It is not clear why
the variation in likelihoods should be reduced, however it is possible that
there are certain situations where the approximate conditionals cause some
events to be severely under-weighted causing certain genealogies to be very
unlikely under the proposal distribution when the full method is used (see, for
example, Figures 4.13 and 4.14 later on). Perhaps the method for choosing
haplotypes according to the prior rates flattens the distribution of possible
events and allows a more uniform exploration of certain parts of the state
space.
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4.2.3 Simulation Study

In order to assess the behaviour of the two models for performing inference I
wrote a program to implement the Importance Sampling method described
above in C++, using both the coalescent and the SMC models.

To simulate the data I used the program ‘make sample’ by Hudson. To
be confident that the importance sampling scheme would generate accurate
likelihood estimates I used very small data sets. The values under which the
data were simulated were θ = 3 and ρ = 5, there were 10 sequences in each
sample and 100 samples in total. This gave a range of numbers of segregating
sites from 1 to 20, with the bulk being between 5 and 15 sites long.

The importance sampler, under both the Coalescent and the SMC, was
run on each of these data sets. I calculated the likelihood on a grid of values,

ρ ∈ {1 × 10−9, 0.1, 0.3, 0.5, 1, 3, 5, 7, 10, 13, 16, 20}

using 500,000 independent runs under both models, for each value of ρ and
for each data set. These genealogies were also used to estimate the likelihoods
at intermediate values of ρ, by correcting the importance weights from the
genealogies for the different underlying recombination rates. However, under
such a coarse grid it is questionable whether the likelihoods for intermediate
values of ρ would be well estimated using this approach. This means that
only approximate values for the MLE can be calculated. However, the signal
for ρ is very weak in the data sets that the importance sampler can anal-
yse effectively. It may not be possible to correctly estimate the underlying
recombination rate to within even a factor of ten in some of these samples.
So there is little value in calculating ρ at a finer grid of points. The time
to the most recent common ancestor as well as the total time in the tree
at the left and right most edges were recorded, as well as the number of
recombination events in each genealogy. The primary analysis consists of
examining how well the likelihoods were estimated and comparing the two
models, Coalescent and SMC.

4.3 Results

The SMC is only a useful model if inference under the SMC reflects bio-
logical reality. I use the ability to approximate the coalescent model as a
measure of how successful the SMC is in this task. In particular I investigate
whether likelihoods calculated under the SMC are similar to those calculated
under the Coalescent. Encouragingly Figure 4.5 shows that the likelihoods
calculated under the two models are very similar. However, in this imple-
mentation and using the parameter values here, the time taken to calculate
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the likelihoods was not greatly reduced under the SMC. This is because only
relatively small values of ρ could be explored in this study. The Coalescent
model and the SMC are very similar when ρ is small. Unfortunately the
parameters of inference are currently severely restricted because the impor-
tance samplers converge very slowly for large numbers of segregating sites. It
would be very interesting to understand the relationship between estimates
of ρ under the two models. Preliminary analysis suggest that there is a
slight decrease in estimated recombination rates under the SMC. However
it is difficult to perform a proper analysis of this effect because very few of
the data sets had significant maximum likelihood peaks that were not at the
boundaries explored. This effect need not harm inference under the SMC a
great deal, but it does suggest that recombination rate related results from
the SMC cannot be implemented in full coalescent methods downstream, in-
stead the SMC should be used throughout for consistency. Finally, it was
also apparent in those data sets analysed that the correlations in tMRCA of
the sample across sites separated by a certain recombination distance were
reduced under the SMC, as expected (data not shown).

ESS

I wish to analyse the performance of the importance sampling scheme and
how this performance varies with changes in the underlying rates and the
dimensions of the data. With any Monte Carlo estimator it is necessary to
assess whether or not the process has converged. Unfortunately it is often
hard to assess how certain we can be of convergence given the results so
far. As, in general, only a sample of the total space has been explored
it is usually impossible to know how significant the contributions from the
unexplored regions of the state space would be. One approach to estimating
convergence is to assume that the variation in future samples will be similar
to those already simulated. This is an imperfect approach, but I use it here
to get an indicator of how well the importance sampler estimates different
likelihoods.

Define the effective sample size, or ESS, of a set of simulations of size N
to be

SE = N ×
1

1 + V 2
C

(4.23)

where VC denotes the coefficient of variation of the N sampled likelihoods.
The ESS (see eg. [43] pp283-284) is a linear approximation to the efficiency
of an importance sampler relative to the optimal importance sampler. That
is, how well the approximate sampler explores the posterior distribution of
interest (in this case ARGs relating to the sample) and in particular how
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Figure 4.5: This graph shows the log likelihoods under the coalescent against
those under the SMC for all of the datasets under ρ = 20. I chose this value
as the differences between the SMC and coalescent likelihoods are expected
to be greatest when ρ is large. It is worth noting that the estimates are least
accurate when ρ = 20 and much of the deviation from perfect correlation for
larger data sets (with lower likelihoods) is probably due to inaccuracy in the
Monte Carlo estimates.
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the variance in statistics of the genealogies decreases as extra samples are
introduced. This formula is not guaranteed to converge to the true relative
efficiency, but it is a simple measure of performance that is easy to calculate.
Larger values of SE indicate greater efficiency and 1 ≤ SE ≤ N . It is normally
not possible to calculate the true value of even SE as the mean and variance
of the target distribution are, in general, unknown. However we can estimate
the mean and variance of the sample and use these to estimate SE:

ŜE = N ×
1

1 + V̂ 2
C

(4.24)

Unfortunately the performance of genealogical importance samplers is poor,
that is: even when large numbers of genealogies have been simulated there
may be genealogies which would contribute very large amounts to the esti-
mated likelihood that have not been sampled. If these genealogies were sam-
pled they would also significantly increase the sample variance and hence
greatly reduce the effective sample size. This leads to the situation that
sometimes estimates of SE are strongly upwardly biased. Low values of SE

should therefore be treated with suspicion (as they may not be low enough)
and in some situations even very high values may exaggerate the evidence
for convergence. Another effect is that inflated ESS values tend to be under-
estimates of the likelihood while overestimates of the likelihood tend to have
very low estimates of the ESS, this effect is shown in Figure 4.6

Despite the large degree of uncertainty in estimates of the ESS there are
practical reasons to believe that there is information in this measure. When
insufficient runs are used to effectively sample the rare highly contributing
ARGs then estimates in the likelihood should be poor. However, by examin-
ing the similarities of the likelihoods between independent estimates of the
likelihood it can be seen that there is very little variation in the estimates
produced for the number of runs used here. This encourages the belief that
the ESS is approximately correct and can be used as a guide to comparing
the performance of different methods when the estimates of ESS are high.

4.3.1 Performance differences between the SMC and

the Coalescent

Although full inference under the SMC is not yet possible for large data sets,
there is still a notable improvement in the efficiency of generating likelihood
values under the SMC at higher values of ρ. This is due to the simpler
space of ARGs under the SMC. In each epoch there are fewer possible events
(due to restrictions on coalescence events). Also, as there is no trapped non
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Figure 4.6: This graph shows estimates of the log coalescent likelihood plot-
ted against the estimated ESS for 250 independent subsamples of 25000 like-
lihood estimates for data set 52 (9 segregating sites). It can be seen that
there is significant difficulty in estimating the effective sample size. It can
also be seen that high ESS values can be misleading and cause bias. The
likelihood is strongly correlated with the reported ESS. This effect is caused
by rare simulations that produced a genealogy with very high weight. Such
runs increase the variance significantly while also increasing the estimated
likelihood. The minimum estimated ESS was 5.56 while the maximum was
264, and this is very typical for such a sample. Note that the coefficient of
variation in estimated ESS values was 0.6 while the coefficient of variation
for the mean likelihood estimates was less than 0.2. In fact overall estimates
of the ESS were significantly more variable than estimates of the likelihood
itself. The estimate of the likelihood from 500,000 independent genealogies
is given by the horizontal grey line.
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ancestral material, there are (on average) fewer recombinations (see Figure
4.7) in the ARGs. This reduces the complexity of the space of ARGs that
contribute significantly to the likelihood. Although it was not possible to
calculate accurate likelihoods for all the data sets for very high ρ where
this has been tried the SMC improvement is much more extreme for higher
ρ (data not shown). Under ρ > 100 coalescent genealogies often contain
thousands of recombination events created by coalescing lineages with very
small amounts of ancestral material and then recombining on the resulting
lineage to give rise to the original pair of sequences. This pattern can repeat
many times in one genealogy. Under the SMC far fewer recombinations occur
as ‘trapped non-ancestral material’ (see Chapter 3) cannot be created under
the SMC. Figures 4.8 and 4.9 show that this reduction in the state space
does lead to improved efficiency, however the improvements due the to SMC
are overshadowed by the fact that both models are severely restricted in the
quantity of data that can be practically analysed.

4.3.2 The Performance Drops considerably as Data size

increases

The performance of the importance sampler varied dramatically between
data sets. For data sets with fewer than 10 segregating sites about 5 hours
computing time on a standard Pentium 4 desktop computer was enough to
calculate an very accurate likelihood curve from 500,000 samples for ρ up to
20. However for 20 segregating sites 100 hours of computing time produced
likelihoods with evidence of significant variation, in one case by almost an
order of magnitude. The rate of convergence of the likelihood also has a
strong impact on the convergence to the true distribution of other statistics
observed, such as the estimated average time to the most recent common
ancestor or the estimated recombination rate. As the likelihoods differed
by significantly less than an order of magnitude between different values
of ρ the lack of convergence for large numbers of sites severely reduces our
ability to estimate a likelihood curve or maximum likelihood estimate, unless
methods using driving values were used. However, these approaches were not
explored extensively here after initial results showed that highly misleading
results may be obtained with little diagnostic power. Figures 4.10 and 4.11
give an indication of how the performance changes with size of the data set,
measured by the number of segregating sites.
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Figure 4.7: This graph shows the number of recombination events in each
genealogy averaged over all data sets and all 500,000 runs. In black is the
average number of simulated recombinations under the coalescent. In red is
the average simulated under the SMC. The green and blue lines show the
estimated posterior mean number of recombinations for the coalescent and
SMC respectively. These were calculated by weighting the number of recom-
bination events in each genealogy by its importance weight. The proposal
schemes lead to, on average, more recombination events than the posterior
distribution because, when incompatibilities are present, the proposal cannot
always identify where recombination must occur (see Figure 4.13). This leads
to recombinations in locations that do not remove any incompatibility (and
coalescence events that may even introduce incompatibilities); further recom-
bination events are then later required to remove these incompatibilities and
reach the common ancestor.
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Figure 4.8: These graphs show the proportion of time that, for the 100
data sets analysed in the study, the coalescent ESS was bigger than the
SMC ESS (black) and vice versa (red) (500,000 independent runs were used
to calculate each likelihood). On the left hand side the genealogies were
simulated with ρ = 1 and on the right with ρ = 20. The horizontal axis
denotes the factor by which the the ESS must have increased for inclusion
at that point. For example, the right hand graph shows that roughly 1
in 5 likelihoods calculated under the SMC had an associated ESS of more
than 5 times that of those generated under the coalescent. It is clear that the
advantages of using the SMC only start to become significant for larger values
of ρ. The time taken per genealogy simulated is not taken into consideration
here, that can be seen in Figure 4.9.
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Figure 4.9: These histograms show the distribution of the CPU time under
the coalescent (to estimate the likelihood using a 500,000 runs) divided by
the CPU time under the SMC for the same likelihood also using 500,000 runs.
On the left is the histogram for ρ = 1 and on the right for ρ = 20. Note
that the SMC performs slightly worse for very small values of ρ, as there is
slightly more to check under the SMC. However, when ρ increases there is a
significant saving in the time required to simulate each genealogy.

How Performance Changes with Different Sample Sizes

As well as changes in the number of segregating sites I also investigated
changes in performance when different numbers of sequences were analysed.
A full scale analysis with hundreds of data sets with large numbers of se-
quences is impractical. I analysed a small number of data sets with many
sequences, but repeated the analyses using different proportions of the total
set of sequences. From this it seems that increasing the number of sequences
has a much less critical effect on the ability of the importance sampler to es-
timate the likelihood (than increasing the number of sites does). A summary
of these results can be found in table 4.2.

While analysing these data it became apparent that a further computa-
tional saving could be made for data with large numbers of sequences. In
these cases coalescence events happen at a much greater rate than when the
number of sequences is small. When the event types were recorded it was
common to see many coalescence events before any other event types were
observed. Furthermore most coalescence events have very similar, or iden-
tical weights in the importance sampler, when multiple mutation events are
possible in an epoch these also tend to have identical weights. Note, however,
that different recombination events can have very different weights, when ρ
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Figure 4.10: This scatterplot shows the log of the ESS estimates against the
number of segregating sites for 500,000 runs, calculated for each data set at
ρ = 5. The Coalescent values are in black and the SMC values are in red.
The models suffer very strongly from increasing the length of the sequences.
Note also that as the estimated ESS gets lower the estimates will also tend to
be an overestimate of the likelihood. This means that the true relationship
is probably even more severe.
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Figure 4.11: This scatterplot gives an indication of the computing time taken
to generate 500,000 genealogies with 10 sequences under ρ = 5 against the
number of segregating sites in each sample. The values for the SMC are
plotted in red and the coalescent times in black. It is worth noting that this
graph can only be used as an indication of the times that various data sets
required to be completed as this is a näıve measure, simply taken by sub-
tracting the time that the particular analysis was started from its completion
time. Many factors may have influenced this, such as jobs being temporarily
halted for other purposes. However, the trend seems clear and it’s apparent
that the time per simulation increases significantly with the number of sites
to be analysed.
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n ρ ESS Time ESS Time
Coalescent SMC

2 10−9 50000 59 50000 58
2 1 36797 93 36515 86
2 20 6769 680 5930 463
3 10−9 25128 131 25175 135
3 1 18586 145 18507 205
3 20 2594 1428 3233 896
5 10−9 30733 195 30730 188
5 1 22014 276 22878 272
5 20 821 1997 353 1225
10 10−9 5902 583 5984 574
10 1 9083 816 9621 835
10 20 15 3489 108 2562
20 10−9 595 2365 611 2434
20 1 1567 3439 2654 3494
20 20 31 12730 5.2 9291

Table 4.2: The performance of the importance sampler when subsets of var-
ious sizes are taken from a data set with 100 sequences. Similar results were
found in all data sets observed (data not shown). The data was simulated
with θ = 3 and ρ = 5, there were 13 segregating sites and 50,000 independent
runs were used to calculate the likelihood for each configuration of parame-
ters. The time is given in seconds (real time) taken to complete the 50,000
runs for that number of sequences and value of ρ. The runs for 100 sequences
would take about 9 days of computing time. Note that the ESS values for
n = 20 show signs of unreliability (ESS is normally seen to, and is expected
to, drop as ρ increases). Given these probably unreliable ESS values for 20
sequences it is likely that many months of computing time would be required
to properly estimate the ESS values for n = 100.
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is small some recombinations are vastly more likely than others. The obser-
vation that coalescence events comprise nearly all of the initial events when
large numbers of sequences are analysed allows the construction of simplified
approaches. These can produce significant reduction in computational bur-
den of the likelihood calculation. There are many possible implementations
that could be used, so I describe a general approach here.

1. Choose an event type according to the prior rates of events.

2. If this event is a recombination event then use the usual dynamic pro-
gramming methods to approximate the likelihood of the data given each
recombination event. Choose from each possible recombination event
using the resulting weights (as in the earlier parts of this chapter, but
with no coalescence or mutation events possible).

3. If the event type is a coalescence (or mutation) then choose uniformly
and at random from the possible coalescence (or mutation) events.

Note that under this scheme certain significant errors could potentially be
made. For example, if the recombination rate is low, but the data contain an
incompatibility then recombination events that remove this incompatibility
will be chosen too rarely, giving rise to high variance in likelihood estimates.
Also, when sequences contain non-ancestral material some coalescence events
could create new incompatibilities - greatly reducing the contribution for that
genealogy. In order to make this method effective it is necessary to exercise
care in its use. It will take considerable thought and testing to find the best
compromise between fast simulation of genealogies and accurate proposal
distributions.

4.3.2.1 How does approximating the optimal importance sampler

compare to previous approaches?

Although it is discussed extensively in their paper [21] it is worth noting again
that the approach developed by Stephens and Donnelly [20], later extended
by Fearnhead and Donnelly, is a considerable improvement over pre-existing
methods. The previous approach used by Griffiths and Marjoram [17] did not
consider the form of optimal importance sampler. In this approach although
certain events could be eliminated through the infinite sites assumption and
compatible genealogies could then be produced, the rates of the events at
each stage were not adjusted for the likelihood of the resulting sample con-
figuration.
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Although this should lead to much faster simulation of events, and per-
haps genealogies, the resulting importance sampler is in fact far less efficient
than that of Fearnhead and Donnelly. Intuitively this is because recom-
bination events are not placed in regions of incompatibility, but uniformly
throughout the data. This leads to a situation where, although more recom-
bination events are simulated when the recombination rate is higher, when
the recombination rate is low many events might still need to be simulated
in order to remove incompatibilities from the data. Indeed even for higher
recombination rates the average number of recombination events simulated
under this scheme was considerably higher than under the scheme used here.

Tables 4.3 and 4.4 show the results from the Griffiths and Marjoram
scheme and the scheme used here when run for 30,000 iterations on data set
1. Figure 4.12 shows the likelihood curves for ρ under the two schemes to
give a more visual indication of convergence. Note that the increased number
of recombination events simulated under the conditionals which did not use
the information in the data led to more computing time being required than
under the more expensive conditional schemes in some cases. Given that the
optimal importance sampler requires information about the likelihood of the
resulting sample configuration it is not surprising that methods which ignore
this factor perform badly. This important observation applies to all impor-
tance sampling - in any scenario where chosen events will affect the likelihood
of the resulting sample configuration to significantly differing degrees these
likelihoods must be considered to achieve maximum efficiency.

4.3.3 Discussion

The data sets analysed here used only 10 sequences and all of the meth-
ods struggled when the number of segregating sites approached 20, even for
days of computing time (using one processor). Although such data could be
comfortably analysed using a collection of computers or with a more power-
ful processor it is close to the limit of this approach. Unfortunately modern
data sets are usually far bigger than those considered here and an importance
sampling approach would be completely impractical for most applications.

The methods I believe would be most effective at increasing the efficiency
of importance sampling methods would focus on improving the conditional
likelihoods used to calculate the weight of each of the possible next events in
each epoch. The current approaches ignore much of the genealogical infor-
mation in the data, these ideas are discussed more fully in Chapter 2. This
lack of genealogical interpretation leads to underestimating the full impor-
tance of a recombination event that removes an incompatibility in the data
- when the recombination rate is low these events will not be proposed often
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ρ Likelihood ESS R̂ R̂W Time Taken
1 × 10−9 -33.9 9445.9 0.5 0.0 594

0.1 -34.0 8256.9 0.7 0.2 548
0.3 -34.0 6835.1 1.1 0.5 583
1 -34.0 6336.8 1.6 0.8 607
1 -34.1 2836.1 2.9 1.7 646
3 -34.3 975.4 8.8 5.0 975
5 -34.5 769.4 15.4 8.4 1321
7 -34.6 148.5 21.8 11.7 1621
10 -34.9 222.1 30.9 16.4 2085
13 -35.0 116.8 39.9 20.8 2607
16 -34.9 23.8 49.3 25.9 4176
20 -35.5 82.1 59.9 33.4 5087

Table 4.3: This table shows the results for the first dataset obtained from
30,000 genealogies simulated under the scheme described in this Chapter. I
used the approximation of haplotypes being chosen according to their prior
rate of events to improve efficiency. The symbols R̂ and R̂W denote the
average, and weighted average numbers of recombination events in the sim-
ulations. Under this scheme the likelihoods are well estimated. This can
be seen from the consistent trend in ρ and the high values of ESS reported.
Repeating the analysis also gave very similar values for the likelihoods (al-
though some variation does occur at the third significant figure for higher ρ.)
It is also worth noting that the average number of recombination events sim-
ulated under the proposal distribution has a moderately good relationship
with the expect number of recombination events under the target (weighted)
distribution.
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ρ Likelihood ESS R̂ R̂W Time Taken
1 × 10−9 -34.1 13.8 0.0 0.0 223

0.1 -34.3 32.4 2.0 0.2 255
0.3 -34.4 8.4 5.5 0.5 385
1 -34.8 7.9 8.7 1.0 658
1 -34.8 3.3 15.4 1.7 872
3 -35.5 4.0 35.1 9.7 1776
5 -38.2 1.9 49.8 17.5 2547
7 -38.0 2.0 62.2 19.3 3329
10 -41.2 3.6 78.4 30.5 4501
13 -41.2 6.3 92.9 43.8 7083
16 -41.3 3.1 105.9 51.8 4828
20 -38.3 1.0 121.5 55.0 5869

Table 4.4: This table shows the results for data set 1 obtained using 30,000
genealogies simulated under a scheme where the likelihood of the sample
configuration after each event is not used. The likelihoods do not appear to
be well estimated, the pattern observed between different values of ρ describes
an implausible likelihood surface and the estimated values of the ESS are
very low (and likely to be significantly over estimated). The reason that
this scheme performs so badly is related to the average number of simulated
recombination events in each genealogy. The scheme proposes very large
numbers of recombination events, even when the underlying recombination
rate is very low. This shows that the genealogies simulated are not a good
approximation to the true conditional distribution of ARGs for this data.
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Figure 4.12: This figure shows the likelihood curves generated by using the
prior rates of events when importance sampling (in blue) and using the like-
lihood of the resulting sample configuration (in red). The blue curve seems
not to have converged as the shape seems unlikely. The red curve shows
roughly consistent estimates on all 20 independent values of ρ calculated. It
is possible to tell from the red curve that this data provides no evidence for
recombination. The total time to produce these results was 3.5 hours for
the red curve and 5.5 hours for the blue curve. However the program was
not optimised for the approach which only used the prior rates of events and
some further gains could probably be made if dedicated software were used.
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enough. When the recombination rate is low incompatibilities are confused
with mutation events. This leads to the schemes underestimating the impact
that incompatibilities have on the likelihood of a sample configuration (see
Figure 4.13). Also even when the schemes recognise that it is essential to
simulate recombination events there can still be considerable confusion about
the best position for this event and the consequences of each possible recom-
bination, some intuitive examples are given in Figure 4.14. Although these
examples assume a low recombination rate to clearly expose the inaccuracies
of the likelihood approximations, these sorts of problem can be observed to
cause serious inaccuracies in the distribution of genealogies given the data.
Tackling these issues and providing a closer approximation to the coalescent
likelihoods may well be the key to creating powerful importance samplers.

One approach to including this information would be to use summaries
of incompatibility in the data, as this is perhaps the strongest evidence for
recombination in the data. When an event under consideration reduces the
estimated minimum number of recombination events required to explain the
data this event could be up-weighted; this would reflect the increase in like-
lihood of the resulting data missed by the conditional approximations.

Another approach might be to try to characterise the simulations that
led to very high importance weights. The quotient P (G)/Q(G) is high for
these genealogies (that is, the genealogy was relatively likely under the prior,
compared to the proposal distribution). It could be useful to understand
what aspects of these genealogies are unlikely under Q(.) when in fact they
are genealogies with high weight under the prior that are compatible with
the data. Understanding these anomalies and appropriately altering the pro-
posal distribution could be used to reduce the variance in the distribution in
the importance weights which would improve the convergence times of the
importance sampler.

Other possible approaches to increasing the scale of inference include
using the genealogies to construct approximate methods of inference. For
example the data could be split into smaller regions, such as in Fearnhead
and Donnelly [38]. The time it would take to properly analyse 50 regions
each with 10 segregating sites in is extremely small compared to the time it
would take to analyse a single data set 500 segregating sites. Alternatively
the weights of the genealogies could be discarded and quantities of interest
could be averaged over the distribution of un-weighted genealogies, which
approximate the true distribution. There are many other possibilities and a
careful analysis into the properties of such methods for specific applications
of interest would be required to assess performance.

In summary: current full likelihood methods are severely restricted in the
size of data sets that they can be used to analyse. However, understanding
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Figure 4.13: This diagram represents a toy data set which illustrates the
inability of the πL&S scheme to recognise the importance of incompatibilities
in data. The data here contains an incompatibility and so at some point
in the history must undergo a recombination event. Under a small value of
ρ genealogies for this data will undergo the two specific events before any
others are likely occur. One is a coalescence event between the two iden-
tical sequences, another is a recombination event that on any unique type
results in data with no incompatibility. Under the schemes described here
the coalescence event gets a much higher weight and is chosen much more
often. However under the true posterior distribution recombinations and co-
alescence events are roughly equally likely. The reason for the disparity is
that the approximation πL&S (or any of the approximations in Chapter 2)
do not give sufficiently low likelihoods for the data which is incompatible.
As explained in Chapter 2 the schemes confuse these incompatibilities with
repeat mutations and when the recombination rate is significantly different
to the mutation rate this causes very inaccurate likelihood estimates. An
interesting side effect of using the Fearnhead approximation mentioned ear-
lier in this chapter is that the ESS is much greater. This is because the
recombinant sequences are chosen at random and, once such a sequence is
chosen, a recombination event must occur. This may be an example of why
this approximation manages to perform well.
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Figure 4.14: The diagram on the left represents a simple data set which can
be used to illustrate some subtle problems with the πL&S approximation.
The first inaccuracy created in using these approximations is that, when the
recombination is very low, recombinations are simulated similarly often at
the first gap between sites as the second. However, with a low recombination
event only genealogies with one recombination event should commonly be
sampled. A recombination event must occur in the first gap between sites but
none is needed in the second. The inaccuracy arises due to the approximate
schemes allowing repeat mutation events which generate incompatibilities
without having to invoke recombination events. When the recombination
rate is much lower than the mutation rate this can strongly affect likelihood
approximations. The second interesting feature in this data set is that even
with low mutation (and recombination) rates the frequency of recombination
events on the third sequence at the first site is very low. While the frequency
of recombination events on the other sequences at the first gap (only) is high.
This arises due to the approximation of the probability of the data given a
recombination event at the first site on the third sequence (the resulting
configuration is the diagram in the middle, where grey denotes non ancestral
material). The key term in this calculation is represented pictorially on
the right hand side. The probability of the single sequence given the three
that remain. This is very low using πL&S as every path in the dynamic
programming algorithm requires either a recombination of repeat mutation
to generate the single sequence given the others. Less formally πL&S perceives
the need for an extra mutation or recombination in order to explain the
presence of this sequence given that those three exist in the population.
However, under the full model this sequence can be explained without the
need for further recombination or mutation.
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the problems with the current methodology could create significant improve-
ments in performance. Also, using these methods to perform approximate
inference could potentially save considerable computing time. Unfortunately
even such improvements and approximations currently seem highly unlikely
to allow full genealogical inference to be applied to modern large scale vari-
ation data sets. These fully genealogical approaches are most likely to be
useful when only small regions of the genome are under consideration. In
these cases it will normally be necessary to model the recombination process
and genealogical approaches are likely to provide the most accurate inference.
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Chapter 5

Discussion

5.1 Introduction

In this thesis I have discussed various statistical models for genetic data in
the presence of recombination, how these methods can be used for inference
about population parameters and the calculation of likelihoods for a sam-
ple of population genetic data. The focus of this thesis is restricted to two
types of model for genetic variation within a population subject to recom-
bination. The first type of model is based on the notion of ‘copying’ where
new sequences are constructed as imperfect mosaics of preexisting sequences.
The second type of model uses the notion of a genealogy which describes the
ancestry and relationships of the sampled sequences.

5.2 Using a Product of Approximate Condi-

tionals

Building on the work of Stephens and Donnelly [20] Fearnhead and Donnelly
[21] constructed a copying scheme that was able to mimic the effects of
mutation and recombination. Li and Stephens [22] took this model and
created a faster, simplified version as a direct approach to calculating the
likelihood through the product of these conditional likelihoods for all of the
sequences in the sample.

This approach has been extremely successful due to the small computing
time required to calculate the likelihood under this model. Although the
model was introduced for estimating recombination rates it is much more
flexible than previous methods for approximating the likelihood. Unlike the
use of summary statistics or composite likelihood methods the PAC model
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can be directly used for a wide range of applications such as phasing genotype
data [29], simulating population data, elucidating population structure and
imputing missing data. The success of this approach has also led to the
development of even faster algorithms, such as that designed by Stephens and
Scheet [23], although this approach does not use an explicit recombination
parameter, so it is not directly comparable with these approaches.

In this thesis I do not focus on the speed of various PAC approaches but
on their properties, in particular, their accuracy when estimating a constant
recombination rate. I have compared four alternative models, including two
novel models (πR and πL2) and reported their individual performance as
well as the relative success of each model at estimating the recombination
rate. There is some evidence that improvements can be made with improved
conditional schemes, and perhaps some improvement has been found in the
scheme πL2 . However in the course of the investigation it became apparent
that there existed some fundamental problems with all of the approaches
tried here.

The PAC approach, whilst able to distinguish between various degrees
of recombination, does not provide unbiased recombination rate estimates.
The schemes investigated here all estimate a non-zero recombination rate in
a high percentage of cases where the data were simulated with no recombi-
nation. Also recombination rate estimates are biased downwards when the
recombination rate is very high. These biases are complex in nature and vary
with the number of segregating sites in a region of fixed length, or equiva-
lently, with the average distance between segregating sites. Li and Stephens
provide an empirical bias correction for data with a constant recombination
rate. However, when recombination rates are allowed to vary this correction
may not lead to unbiased estimates.

By examining the schemes in more detail, and by using genealogical ap-
proaches as a gold standard, it is possible to identify certain features of the
data that are incorrectly interpreted by PAC schemes. As a result a greater
number of mutation or recombination events are sometimes required to ex-
plain the data than in the genealogical case. Similarly PAC models confuse
the signal for recombination with mutation which can result in an under-
estimate of the recombination rate. These effects also make a broad bias
correction term inadequate to provide completely accurate inference - this
only affects the average estimate of the recombination rate.

There have been attempts to improve the choice of orderings used by the
PAC schemes to reduce the effect of spurious recombination signals being
inferred, although no such work has yet been published. Altering the order in
which sequences are considered, or other more severe changes to the schemes
designed to deal with various signals for recombination are not sufficient to
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overcome these difficulties. In most cases there will exist no ordering or
sequence sampling scheme which will does not infer unnecessary events when
generating sequences given the others in the sample.

Many of the problems suffered by the copying models of sequence evo-
lution stem from the fact that the true evolutionary process has a complex
structure in which sequences change through time. This induces an ordering
on events that is not reflected in copying processes, as discussed in Chapter
2. The time ordering of events can lead to sequences which, although differ-
ent to others in the sample, can be explained (on examination of these other
sequences) without inferring further mutation or recombination events. If
a copying approach could be designed which was able to incorporate such
aspects of the ancestry while retaining computational efficiency it might pro-
vide a means of performing much more accurate inference on recombinant
data.

One possible approach to this is to make the following distinctions. Con-
sider a sample of k haplotypes and the probability of observing a k + 1th

haplotype, hk+1, that is distinct from all of the first k at some locus. Then
hk+1 can be viewed as being derived from these k haplotypes with

1. A novel mutation

2. A repeat mutation or recombination

3. No mutations or recombinations.

For examples of these three situations see Figure 5.1. Under the PAC
approach it is impossible to distinguish between situations 2 and 3 in the list
above and this can lead to false signals for recombination. One approach to
distinguishing these situation would be to use estimates of Rmin which try
to count the number of events of type 2 in the sample. The most accurate
method that does not require the simulation of genealogies is the bound Rh

introduced by Myers and Griffiths [34], although more accurate, although
computationally intensive, bounds have been proposed by Song and Hein
[44]. This method can also be used to (partially) localise incompatibilities.
When a new sequence is added to the sample, if Rh is increased then this is
evidence for recombination and so recombination should be simulated within
the algorithm. When Rh does not increase this is evidence (but as Rh is
imperfect there is no certainty) that a time ordering effect can explain some
of the differences in the new sequence: so these differences should be treated
in a different way.

Another possible approach would be to construct hybrid haplotypes from
those in the sample representing ancestral individuals that could be ‘copied’
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Figure 5.1: This diagram shows 3 different possibilities that might arise when
calculating the probability of new haplotype, h, given a pre existing set of
sequences (with none the same as H). Haplotype 1 contains a novel mutation,
these are trivial to observe. Haplotype 2 can be explained through a time
ordering effect (that requires no extra mutation) (eg. see Figure 2.10 from
Chapter 2). Haplotype 3 creates an incompatibility in the data that was not
previously present.

from. This gives a more natural, and therefore potentially more biologically
meaningful, interpretation of the copying process. Combinatorial approaches
to manufacturing such ancestral sequences have been proposed [45], but much
development is required. Modelling of underlying biological processes and a
statistical approach including the notion of likelihood would be required to
make use of such ideas in this setting. Alternatively, a graph-like approach
with the extant lineages as internal nodes, such as that developed by Fitch in
1977 [46], could be extended with directional edges denoting the direction of
copying and intermediate sequences from which other sequences could copy.

5.3 Genealogical Models

The second major theme of this thesis was to reduce the computational
burden of performing genealogical inference in the presence of recombination.
I describe a new model, the SMC, of ancestry which is based on the coalescent
and which is identical to the coalescent in the absence of recombination
[36]. The SMC produces provides a Markovian structure when simulating
genealogies along a sequence and reduces the overall state space of ARGs.
In this thesis I compare the coalescent and the SMC, both in terms of the
properties of the models, as well as the impact that the simplified structure
of the SMC has on performing inference using importance sampling.

When importance sampling is used to calculate the likelihood of small
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data sets the SMC and the coalescent perform similarly for small amounts of
recombination. When the recombination rate increases there is a systematic
decrease in the average number of recombination events under the SMC which
leads to genealogies being simulated faster and to lower variation in likeli-
hood estimates. Unfortunately this effect starts to become important only
when the recombination rate is high, usually this arises in data so large that
inference under both models is usually very challenging or impossible. Only
in organisms, or genomic regions, where the recombination rate is very high
compared to the mutation rate will this simple use of the SMC provide truly
significant gains in efficiency. Another possibility for improving inference is
that the sequential form of the SMC could be used, perhaps to construct
an MCMC scheme where local genealogies were updated conditional on the
two immediately adjoining trees. This would be a valid approach within the
SMC because of the Markov property when genealogies are viewed along a
sequence. However, it was found to be challenging to correctly condition on
neighbouring genealogies when performing an update.

The importance sampling schemes used here were unable to perform ac-
curate inference on data sets with a large number of segregating sites. Due
to the reduced cost of genotyping it is now common for data to contain
many segregating sites. This limitation makes the impact of improvements
in full likelihood methods questionable. However, there are both theoretical
and practical reasons why such schemes may be further pursued. Firstly,
note that improving the methods for calculation of approximate likelihoods
has the potential to revolutionise importance sampling. Under the optimal
importance sampler only one genealogy need be simulated to calculate the
likelihood. Using the ideas in Chapter 2 and above in this discussion it
may be possible to provide closer approximations to these optimal condi-
tionals. However, how the performance changes as the importance sampler
approaches the optimal sampler has not been explored here, and is perhaps
an important question.

On a more practical level, approximate methods may be constructed using
full likelihood methods. Composite likelihood approaches (see eg. McVean
et. al. [14] or Fearnhead and Donnelly [38]) use likelihoods constructed from
multiple subsets of segregating sites and combine the results to provide infer-
ence for large regions. These approaches are designed to infer recombination
rates however it may be possible to apply the same approaches to a range of
population genetic questions when recombination is present.
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5.4 Summary

Modern genetic data can help to provide account of the history of popu-
lations. Using this we can learn about the biological processes that change
individual organisms through time. This information can be helpful in under-
standing underlying biological mechanisms that give rise to different pheno-
types, and even disease in human populations. Unfortunately, the processes
that give rise to this data are highly random and the data that we observe
does not readily yield the information that we desire.

Statistical models have the potential to account for random elements,
and to pinpoint quantities of interest within the data. However, designing
accurate models which allow the construction of computationally efficient
algorithms to perform these inferences remains a challenging task. The coa-
lescent with recombination directly models the ancestry of a sample, and so
provides the opportunity to distinguish between different forces and processes
affecting the data. It is also theoretically possible to estimate parameters of
interest, such as the mutation and recombination rates. However performing
efficient inference under the coalescent has proved to be extremely challeng-
ing.

Approximations to the coalescent have provided a compromise between
accuracy and efficiency. While there are currently no models that can truly
claim to have found the perfect balance between simplicity and effectiveness,
there is much evidence for progress. By understanding the shortcomings of
the methods of today it may be possible to design faster and better methods
for understanding the data of tomorrow.
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