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1 Introduction

This project is concerned with the general problem of understanding groups,
and in particular finitely generated infinite groups. It is natural to study
finitely generated and finitely presented groups; many examples appear through-
out mathematics.

Given a finitely generated group G with generating set S, we place a
natural metric on G (the word metric; see 2.3). This allows us to consider
G as a metric space. Unfortunately, the metric depends on the choice of
generating set S, rather than just on the group G. However, there are many
properties of this metric which do not depend on the choice of S. One such
concept is that of the number of ends of G. This project is concerned with
understanding the ends of a group and studying groups using this concept.

The definition of ends was achieved by Freudenthal in 1931 [4, pp. 692-
713]. The application to group theory was initiated by Freudenthal [5, pp.
261-79],[6, pp. 1-38] and Hopf [9, pp. 81-100] and Specker [20, pp. 167-174].

There are many (equivalent) definitions of the ends of a group, and our
first task is to present these definitions and prove that they are equivalent.

It is immediate from the definition that the number of ends of a group is
either a non-negative integer or infinite. We prove that a finitely generated
group has either 0,1,2 or infinitely many ends (See Theorem 4.15). The
groups with 0 ends are precisely the class of finite groups. We say little
about finite groups, as the techniques we develop are largely applicable to
infinite groups.

By constructing structure theorems about groups that have two or in-
finitely many ends the theory can be broken up in to smaller parts. A key
theorem is that of Stallings [22]. Note we do not prove Stalling’s theorem
here, but we do discuss a few of its implications.

Stallings’ theorem tells us that any finitely generated group G with in-
finitely many ends is a free product with amalgamation, where the amalga-
mated subgroup is finite. In particular if G is a finitely generated torsion
free group then G is a free product. Although this second result is included
in [22] it was proved earlier in [21].

The motivation for this project is primarily group theoretic but we will
need to use some algebraic topology to prove the results. In particular we will
need the theory of groups acting on spaces and some elementary cohomology
theory. We will use this to analyse some geometric properties of groups.

We start, in Section 2 by defining a metric on a group G and the Cayley
graph of G. These ideas will be central to the paper. In Section 3 we then
introduce the idea of a quasi-isometry between metric spaces so that these
ideas are well defined. A useful result is that the ends of a group is a quasi-
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isometric invariant.
Once this has been completed we define the ends of a group in Section 5

and prove some important foundations for the structure theorems we want
to show. Finally, in Section 6 we prove that the only possibilities for the
number of ends of a group are: 0,1,2 or infinity. Using this we can then
prove the structure theorems for groups with two ends.

2 Groups as Metric Spaces

We will begin with the most important and basic definitions. Throughout
the project we work only with finitely generated groups.

The first definition is that of a simplical (or cell) complex. Simplicial
complexes are very useful spaces to work with for this theory.

We use Lackenby’s approach [12]. The first thing to consider is the idea
of attaching cells to spaces.

Definition 2.1. A space Y is obtained from a space X by attaching an m-
cell if there exists f : Sm−1 → X and Y is the quotient of the disjoint union
Dm ∪ X; where the quotient identifies x and all points in f−1({x}) for all
x ∈ Sm−1.

For example given two copies of S1 we can form S1∧S1, the space formed
by ‘attaching’ the circles at a point (Figure 1).

Definition 2.2. 1. Start with a discrete set, X0, whose points are re-
garded as 0-cells.

2. Inductively we form the n-skeleton Xn fromXn−1 by attaching n−cells
to Xn−1.

3. This process can either continue indefinitely, so that X =
⋃
n

Xn, or it

can stop giving X = Xn.

An X created in this way is called a simplicial complex (or cell com-
plex ).

A simple example is that of the torus. Consider the usual representation
as square with opposite edges identified with the same orientation (Figure
2).

The torus has one vertex, three edges and two faces. That is, we start
with one 0-cell (the vertex), attach three 1-cells (the edges) and then attach
two 2-cells (faces) along the edges. It’s not necessary to attach two 2-cells,
but in this way we have a triangulated space (see [11]).
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I put a picture of the wedge of 2 circles here, but it isn’t working for pdf.

Figure 1: The Wedge of two Circles

��

//

�� ��//

Figure 2: The (triangulated) Torus

Similarly, we can triangulate R2 (Figure 3)to obtain the following simpli-
cial complex:

Definition 2.3. Given a group G and a finite generating set S we can de-
fine the word metric on G. Given g, h ∈G there exists a finite sequence:
(s1, s2, s3, . . . , sk−1, sk)with the si ∈ S ∪ S−1 and g−1h = s1s2 . . . sk However,
this is not unique. Choosing a some sequence of minimal length we can define
dS(g, h) = k.

Lemma 2.4. The pair (G, dS) is a metric space.

Proof:

(i)Positivity: Clearly dS(g, h) ≥ 0 and dS(g, h) = 0 if and only if g = h.

(ii)Symmetry: By replacing elements of S with the corresponding ele-
ments of S−1 and vice versa, then reversing the order of the si we see
that dS(g, h) = dS(h, g).

(iii)Transitivity: Now, if
∏
si = g−1h and

∏
s′i = h−1k then (

∏
si)(

∏
s′i) =

g−1k. So, by concatenating products we see that dS(g, h) + dS(h, k) ≥
dS(g, k). �

Cayley Graphs

Having defined a metric on G we can ask many interesting topological ques-
tions about groups. We start with some basic definitions.
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Figure 3: R2 as a simplicial complex

Definition 2.5. Given a group Γ and a generating set S we can define the
Cayley Graph, ΓS of Γ. The Cayley graph is a graph with orientation with
vertex set Γ. The edge set of ΓS is E, where e ∈ E if and only if there exist
g, h ∈ Γ and s ∈ S ∪ S−1 with s = g−1h, and e joins g to h.

We define a natural metric on ΓS as follows; let each edge be isomorphic
to I the unit interval in R, and give ΓS the path metric, namely, the distance
between two points is the length of the shortest path between them.

Note that the distance between two points joined by a generator is 1. So,
given two vertices of ΓS the minimum distance between them, the length of
the shortest path, is then exactly the minimum number of generators needed
for gh−1. That is, restricting the metric on ΓS to the vertices gives dS, the
word metric on G with respect to S.

A useful example is Z×Z, which can be drawn as in Figure 4 to highlight
that it is the Cayley graph of a group, Z× Z. Or, more usually, to highlight
its geometric structure in Figure 5.

Also, consider F 〈a, b〉 (Figure 6) the free group on 2 generators. This
group is interesting, both from the point of being a group with infinitely
many ends, and also in algebraic topology.

Unfortunately, the Cayley graph of Γ is not unique for each group Γ but
is defined for each pair (Γ, S) where S is a finite generating set for Γ. See,
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· · ·(−2, 2) // (−1, 2) //
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(0, 2) //

OO

(1, 2) //

OO

(2, 2)· · ·

· · ·(−2, 1) // (−1, 1) //

OO

(0, 1) //

OO

(1, 1) //

OO

(2, 1)· · ·

· · ·(−2, 0) // (−1, 0) //

OO

(0, 0) //

OO

(1, 0) //

OO

(2, 0)· · ·

· · ·(−2,−1) // (−1,−1) //

OO

(0,−1) //
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(1,−1) //

OO

(2,−1). . .
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...
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Figure 4: The Cayley graph of (Z× Z, {(0, 1), (1, 0)}) (a)
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Figure 5: The Cayley graph of (Z× Z, {(0, 1), (1, 0)}) (b)
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Figure 6: The Cayley graph of (F 〈a, b〉, {a, b})

· · · //−4 //−3 //−2 //−1 // 0 // 1 // 2 // 3 // 4 //· · ·

Figure 7: The Cayley graph of (Z, {1})

for example, the Cayley graphs of (Z, {1}) and (Z, {2, 3}) (Figures 7 and 8).
Also, we see that, for example d{1}(1, 2) = 1 but d{2,3}(1, 2) = 3.
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Figure 8: The Cayley graph of (Z, {2, 3})

However, in Lemma 3.18 we show that this ambiguity is not important
in this paper.

3 Quasi-isometries

Definition 3.1. If X1, X2, are metric spaces, a (not necessarily continuous)
map, f : X1 → X2 is said to be a quasi-isometry if

1. There exists K ≥ 1, C ≥ 0 so that for all x, y in X1

1

K
d1(x, y)− C ≤ d2(f(x), f(y)) ≤ Kd1(x, y) + C.

2. There is a constant, M ≥ 0, such that every point of X2 lies within an
M neighbourhood of the image of f . In this case X1 and X2 are said
to be quasi-isometric.

Lemma 3.2. Being quasi-isometric is an equivalence relation.

Proof: 1. Reflexivity is obvious as the identity map is sufficient.

2. Symmetry: Suppose f is a quasi-isometry from (X2, d1) to (X2, d2).
Now, we know that every point of X2 lies within an M neighbourhood
of the image of f . Define g : X2 → X1 by:

(i) If x ∈ Im(f) then define g(x) to be some element of f−1(x).

(ii)If x 6∈ Im(f) then set g(x) = q, where f(q) is some point and
q = g(f(q)), with d2(x, q) ≤ M of x. We can do this as f is a
quasi-isometry.

Suppose x, y ∈ X2, then there exist points xf , yf in the image of f
with g(x) = g(xf ) and g(y) = g(yf ). By definition of g these satisfy
d2(x, xf ) ≤M and d2(y, yf ) ≤M .

By the triangle inequality d2(x, y) ≤ d2(xf , yf ) + 2M and d2(x, y) ≥
d2(xf , yf )− 2M .
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For all a, b in X1 we have,

1

K
d1(a, b)− C ≤ d2(f(a), f(b)) ≤ Kd1(a, b) + C,

thus we see that

1

K
d1(g(xf ), g(yf ))− C ≤ d2(xf , yf ) ≤ Kd1(g(xf ), g(yf )) + C.

So,

d2(x, y) ≤ d2(xf , yf ) + 2M ≤ Kd1(g(xf ), g(yf )) + C + 2M,

and

d2(x, y) ≥ d2(xf , yf )− 2M ≥ 1

K
d1(g(xf ), g(yf ))− C − 2M.

So, g is a quasi-isometry from X2 to X1 and that being ‘quasi-isometric’
is a symmetric relation.

3. Transitivity: Suppose (X1, d1) is quasi isometric to (X2, d2) and (X2, d2)
quasi-isometric to (X3, d3). Then there exist quasi-isometries

f : X1 → X2, g : X2 → X3.

Taking h = g ◦ f we immediately see that h is a quasi-isometry from
X1 to Z1 with:( 1

K1K2

)
d1(a, b)−

(C1

K2

+C2

)
≤ d3(h(a), h(b)) ≤ (K1K2)d1(a, b)+(K2C1+C2),

for all a, b in X1.

Also every point of X3 lies within a (K2M1 +C2) +M2 neighbourhood
of the image of h. Here K1, C1,M1 are the quasi-isometry constants
and K2, C2,M2 are the quasi-isometry constants for g. �

Proposition 3.3. If G is a group and S, S ′ are two finite generating sets,
then the identity map, i : (G, dS) → (G, dS′), is a quasi-isometry.

Proof: As S is a generating set we can write the elements of S ′ in terms
of elements of S ∪ S−1 so that

S ′ = {s′k : 0 ≤ k ≤ l}
= {si1si2 . . . sim(k)

: si1si2 . . . sim(k)
= s′k, 0 ≤ k ≤ l, sij ∈ S ∪ S−1,m(k) ∈ N}.
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Suppose g, h ∈ G. Let K1 = max
0≤k≤l

{m(k)} in the above. We see that

dS′(g, h) ≤ K1dS(g, h). Similarly, writing the elements of S in terms of S ′ we
get K2 with dS(g, h) ≤ K2dS′(g, h). Let K = max{K1, K2}.

Now,
1

K
dS(g, h)− 0 ≤ dS′(i(g), i(h)) ≤ KdS(g, h) + 0,

which is exactly what we need for i to be a quasi-isometry. (Note that,
as the identity is surjective, M = 0.) So, for this paper, it now makes sense
to talk about the word metric. �

Natural Quasi-isometries and the S̆varc-Milnor Lemma

We follow Bridson and Haefliger [1, pp 4, 131-145] for this section.
We prove that a group acting on space in a particular way gives rise to

a quasi-isometry between the group and the space it acts on. Later we will
note that the number of ends of a group is a quasi-isometry invariant; this
tells us that if a group acts on a space in this way it has the same number
of ends as that space.

Definition 3.4. Let (X, d) be a metric space and x, y two points in X. A
geodesic path joining x to y (or, a geodesic from x to y) is a map c from a
closed interval, [0, l] ⊂ R to X such that c(0) = x, c(l) = y and d(c(t), c(t′)) =
|t− t′| for all t, t′ ∈ [0, l]. So, in particular, l = d(x, y)). If c(0) = x then c is
said to issue from x.

In the above definition the image α of c is called a geodesic segment with
endpoints x and y.

Definition 3.5. A metric space (X, d) is said to be a geodesic metric space
(or a geodesic space) if every two points in X are joined by a geodesic path.

Remark 3.6. 1. The Cayley graph, ΓS of a group,G, is a geodesic metric
space.

2. When G acts on ΓS, its Cayley graph, it acts properly by isometries.

3. If G is finitely generated then ΓS is a proper geodesic metric space.

Definition 3.7. An action of a group Γ on a topological space X is a ho-
momorphism φ : Γ → Homeo(X), where Homeo(X) is the group of self
homeomorphisms of X. If X is a metric space, then one says that Γ is acting
by isometries on X if φ(Γ) ⊂ Isom(X), where Isom(X) is the group of all
isometries from X to itself.
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We shall now suppress all mention of φ and write γ.x for the image of
x ∈ X under φ(γ), and γ.Y for the image of a subset Y ⊂ X. we shall write
Γ.Y to denote

⋃
γ∈Γ

γ.Y .

Definition 3.8. An action is said to be free if, for every x ∈ X and every
γ ∈ Γ \ {1}, one has γ.x 6= x.

Remark 3.9. Note that the natural action of G on ΓS is free and, therefore,
so is the action of H, for any subgroup,H, of G.

Definition 3.10. An action is said to be cocompact if there exists a compact
set K ⊂ X such that X = Γ.K.

Definition 3.11. Let Γ be a group acting by isometries on a metric space
X. The action is said to be proper (or, Γ acts properly on X) if for each
x ∈ X there exists a number r > 0 such that the set,

P = {γ ∈ Γ : γ.B(x, r) ∩B(x, r) 6= ∅}

is finite.

Remark 3.12. If X is proper then, for any r > 0 the set P is finite.

Definition 3.13. Given an action of a group Γ on a space X, we write Γx for
the stabiliser (isotropy subgroup) of x ∈ X, that is Γx = {γ ∈ Γ : γ.x = x}.

Lemma 3.14. Let X be a topological space, let Γ be a group acting on X by
homeomorphisms, and let U ⊂ X be an open subset such that X = Γ.U .

If X is connected , then the set S = γ ∈ Γ : γ.U ∩ U 6= ∅ generates Γ.

Proof: Let H ⊂ Γ be the subgroup of Γ generated by S, let V = H.U and
let V ′ = (Γ\H).U . If V ∩V ′ 6= ∅, then there exist h ∈ H, h′ ∈ Γ\H such that
h−1h′.U ∩U 6= ∅ and hence h′ ∈ HS ⊂ H, contrary to assumption. Thus the
open sets V and V ′ are disjoint. Now, V is non-empty and X = V ∪ V ′, so
since X is connected, we have V ′ = ∅. Therefore H = Γ, as required. �

Lemma 3.15. Let (X, d) be a metric space. Let Γ be a group with finite
generating set A and associated word metric dA. If Γ acts by isometries on
X, then for every choice of base point x0 ∈ X there exists a constant µ > 0
such that d(γ.x0, γ

′.x0) ≤ µdA(γ, γ′) for all γ, γ′ ∈ Γ.
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Proof: Let µ = max{d(x0, a.x0) : a ∈ A ∪ A−1}. If dA(γ, γ′) = n then
γ−1γ′ = a1a2 . . . an for some aj ∈ A ∪ A−1. Let gi = a1a2 . . . ai. By the
triangle inequality, d(γ.x0, γ

′x0) =

d(x0, γ
−1γ′.x0 ≤ d(x0, g1.x0) + d(g1.x0, g2.x0) + . . .+ d(gn−1.x0, γ

−1γ′.x0).

Now, for each i we have d(gi−1.x0, gi.x0) = d(x0, g
−1
i−1gi.x0) = d(x0, ai.x0) ≤ µ.

�

The S̆varc-Milnor Lemma provides many natural examples of quasi-isometries.
This is especially useful as we show that the number of ends of a space is a
quasi-isometric invariant.

Theorem 3.16. (The S̆varc-Milnor Lemma). Let X be a proper geodesic
space. If Γ acts properly and cocompactly by isometries on X, then Γ is
finitely generated and for any choice of basepoint x0 ∈ X, the map γ → γ.x0

is a quasi-isometry for any word metric on Γ.

Proof: Let C ⊂ X be a compact set with Γ.C = X. Choose x0 ∈ X and
find D > 0 such that C ⊂ B(x0, D/3) and let A = {γ ∈ Γ : γ.B(x0, D) ∩
B(x0, D) 6= ∅}. As Γ acts properly and X is proper, A is finite.

In Lemma 3.14 we showed that A generates Γ. Let dA be the word metric
on (note, which metric we choose is irrelevant) Γ associated to A. Lemma
3.15 yields a constant µ such that (.γ.x0, γ

′.x0) ≤ µdA(γ, γ′) for all γ, γ′ ∈ Γ,
so it only remains to bound dA(γ, γ′) in terms of (.γ.x0, γ

′.x0).
Note that both metrics are Γ-invariant. So we need only compare dA(1, γ)

and d(x0, γ.x0).
Given γ ∈ Γ and a geodesic path c : [0, 1] → X of finite length with

c(0) = x0 and c(1) = γx0, we can choose a partition 0 = t0 < t1 < . . . < tn =
1 of [0, 1] such that d(c(ti), c(ti+1)) ≤ D/3 for all i.

For each ti we choose an element γi ∈ Γ such that d(c(ti), γi.x0) ≤ D/3;
choose γ0 = 1 and γn = γ. Then, for i = 1, . . . , n we have d(γi.x0, γi−1.x0) ≤
D and hence ai := γ−1

i−1γi ∈ A.

γ = γ0(γ
−1
0 γ1) . . . (γ

−1
n−2γn−1)(γ

−1
n−1γn) = a1 . . . an−1an.

Because X is a geodesic space, we can choose the curve c considered above
to have length less than d(x0, γ.x0) + 1. If we take as coarse a partition,
0 = t0 < t1 < . . . < tn = 1 as possible with d(c(ti), c(ti+1)) ≤ D/3, then
n ≤ 3

D
d(x0, γ.x0) + 3

D
+ 1. Since γ can be expressed as a word of length n,

we get dA(1, γ) ≤ 3
D
d(x0, γ.x0) + 3

D
+ 1. �
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Consider the natural action of (Z × Z, dS) on R2 where R2 is endowed
with the usual Euclidean metric. That is,

(m,n) : (x, y) → (x+m, y + n).

This action is clearly an isometry. Also, if we consider the closed subspace,
I×I (where I is the closed unit interval in R), we see that (Z×Z).(I×I) = R2

so the action is cocompact. If we consider an open ball of radius 1
3

around
any point we see that the action is proper.

So, using S̆varc-Milnor we can easily see that (Z×Z, dS) is quasi-isometric
to R2.

Considering the Cayley graph of Z× Z (See Figure 5) then helps with a
intuitive understanding of S̆varc-Milnor.

There is a a more general result concerned with π1(X), the fundamental
group, of a space. If X be a compact metric simplicial complex then the
universal covering space X̃ has an induced metric. Now, π1(X) acts on

X̃ and this action satisfies the criteria of the S̆varc-Milnor Lemma. Hence
π1(X), with any word metric, is quasi-isometric to X̃.

Remark 3.17. Inclusion is a quasi-isometry from (G, dS) to ΓS. The quasi-
isometry constants are K = 1, C = 0,M = 1

2
.

Lemma 3.18. Let G be a group and let S, S ′ be finite generating sets for G,
then the Cayley graphs ΓS and ΓS′ are quasi-isometric.

Proof: Using Remark 3.17 and the fact that quasi-isometry is a symmetric
relation (Lemma 3.2) we have that ΓS is quasi-isometric to (G, dS). Also,
(G, dS) is quasi-isometric to (G, dS′) by Proposition 3.3. Now, using Remark
3.17 again we have (G, dS′) is quasi-isometric to ΓS′ . Now, quasi-isometry
is an equivalence, by relation Lemma 3.2, this shows that ΓS and ΓS′ are
quasi-isometric. �

We have shown that any 2 Cayley graphs are quasi-isometric (for finite
generating set S). So, for the purposes of quasi-isometrically invariant prop-
erties of groups we may now talk about the Cayley graph of G.

Lemma 3.19. Let G be a finitely generated group and H a subgroup of finite
index in G. Then (G, dS) is quasi-isometric to (H, d(S∩H)).

Proof: Let H act on (G,DS). We have noted in Remark 3.9 that H acts
freely and hence properly. The subgroup H has finite index in G so H acts
with finite quotient, and hence cocompactly. So, Theorem 3.16 implies that
(G, dS) is quasi-isometric to (H, d(S∩H)). �
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4 Homology

Central to many of the arguments in the paper are the ideas of cohomology.
Only simplicial cohomology is needed in the paper which simplifies the theory.

We assume a familiarity with homology (See, for example [12], [13, pp.
147-178] or [10, Chapter 2]) but remind the reader of a few important ideas.

The nth−homology groups are often described as giving the n dimensional
information about a space. Although not precise a common idea is that if a
space has only n dimensional parts has trivial mth−homology groups for all
m > n. Similarly, for cohomology, a space with only n−dimensional parts
has trivial (m+ 1)st−cohomology groups for all m > n.

In this project the spaces we work with are all simplicial complexes. In
this case the above can be made precise. If , in the construction of X, as in
the definition of a simplicial complex, only cells of dimension less than than
n are added to X then X has trivial mth−cohomology groups for all m > n.

Hence for Cayley graphs, with only 0 and 1 dimensional cells, cohomolgy
is greatly simplified. We see that, for this paper, we need only consider the
0th−homology group.

We now define homology and cohomology for simplicial complexes.
The first step in considering homology is to create a chain complex. The

space is split in to a countably infinite list of abelian (chain) groups. Each of
the chain groups contains n−chains. These n−chains are linear combinations
of simplices and the preferred simplices here are generalisations of triangles.

To make use of this chain complex we introduce maps from the nth chain
group to the (n− 1)st chain group.

Definition 4.1. We define ∂n : Cn(X) → Cn−1(X), the boundary map, by:

∂n(c) :=
∑

i

(−1)ifi(c).

where the fi are the ith face maps. These are defined on the algebraic
topology course [12] (or see [13, pp. 159] or [10, p. 7]), so we do not define
them here. Intuitively these give the components which make up the edges of
a simplex. So, for a tetrahedron the ith face map gives one of the conventional
faces. For an edge the faces are the points at both ends. For a triangle a face
would be one of its three bounding edges. Recall that in homology theory
each simplex is given an orientation.

The boundary map then gives us an ordered sum of all of these faces. So,
given a triangle, the boundary of the triangle is an ordered sum of the three
bounding edges. The boundary of a tetrahedron is an ordered sum of the
faces (triangles) of the tetrahedron.
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Definition 4.2.

1. Elements of the kernel of a boundary map are the n−cycles.

2. An element of the image of a boundary map is called a boundary.

Remark 4.3. Recall that in any chain complex the boundary maps always
satisfy ∂n−1∂n = 0 for all n ∈ N. This fact is often written as ∂∂ = 0, and
this implies that

Im(∂n+1) ⊂ Ker(dn).

As homology groups are abelian this allows us to consider the quotient
group Ker(∂n)/ Im(∂n+1) and make the following definition.

Definition 4.4. We define the nth homology group of a space,X, as

Hn(X) := Ker(∂n)/ Im(∂n+1).

Cohomology

Cohomology can be viewed as a dualisation of homology. Instead of work-
ing with simplices with cohomology we work with homomorphisms from the
simplices to a group G.

The following definitions are from Massey [13, pp.305-307]

Definition 4.5. A cochain complex K consists of a sequence of abelian
groups {Kn} and homomorphisms δn : Kn → Kn+1 defined for all n and
subject to the condition that δn+1δn = 0 for all n.

The above definition is very general but we will only use the specific
cohomology given by the following dualisation of homology.

Definition 4.6. For any space,X and any abelian groupG define Cn(X,G) :=
Hom(Cn(X), G).

In this paper the group G will always be Z2, the additive integers mod
2. So the cochains we work with are homomorphisms from our simplicial
complex to Z2. That is, we assign 0 or 1 to each simplex. Such an assignment
describes a subset (of the simplicial complex), namely all the simplices which
are mapped to 1.

We also only use a very small amount of cohomology theory. Our spaces
will be simplicial complexes, and, for the most part, Cayley graphs.

The maps from the vertices to Z2 correspond to subsets of G. The chain
corresponding to a subset A will map vertices to 1 if that vertex corresponds
to an element of A otherwise the vertex is mapped to 0.

14
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Definition 4.7. Define δq : Cq(X,G) → Cq+1(X,G) in following way: given
c ∈ Cq(X) and a homomorphism f ∈ Hom(Cq, G), define δq ∈ Hom(Cq+1, G)
by

(δqf)(c) := f(∂q+1(c)).

The maps δq are called coboundary operators.

Now we can define:

C∗(X,G) := {Cn(X,G), δn},

and this is a cochain complex.
The above definitions give rise to a structure which has much in common

with homology. The condition that δδ = 0 allows us to define two useful
terms.

Definition 4.8. Elements of the image of a map δ are called coboundaries

Definition 4.9. Elements of the kernel of a map δ are called cocycles

Definition 4.10. Then the nth−homology group is the quotient of the co-
cycles by the coboundaries, that is:

Hn(X) := Ker(δn)/ Im(δn+1).

Note that if we replace n by −n we get a chain complex and can apply
the results of homology.

5 Definitions and equivalence of definitions

In the following section we develop the theory of the ends of a space. The
basic structure of this section mimics a paper by Scott and Wall [18, pp.
171-179]. Also, the proofs used here are based on those given in that paper.
We assume throughout that X is a locally finite simplicial complex.

Definition 5.1. Let X be a locally compact simplicial complex. For each
compact sub-complex K, the number of connected components of X \ K
is finite; denote by n(K) the number of components having noncompact
closure in X . Now define the number of ends e(X) := sup{n(K)} where the
supremum is taken over all compact subcomplexes K.

Note that homeomorphic spaces must have the same number of ends.

Remark 5.2. This can be defined in terms of finite K and finite components
of X \K where K finite means that K consists of finitely many simplices.

15
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Clearly e(X) = 0 if and only ifX is compact. Otherwise e(X) is a positive
integer or +∞.

The following spaces become simplicial complexes after triangulation so
the definition applies to them.

Remark 5.3. We give examples of complexes with 1, 2, and infinitely many
ends.

1. Consider the real line R; removing a single point, k leaves two distinct
infinite componenets so n({k}) = 2. However any compact K is con-
tained in a closed interval J , and R \ J has only two components, call
them C1 and C2. Given any closed component, A, of R \ K with no
points in either of the Ci we see that A ⊂ J so A is bounded hence
compact.

This gives n(R \K) = 2 for all compact K(6= ∅) so, e(R) = 2

2. Similarly since the complement of a (large) disc is connected in Rn,
e(Rn) = 1.

3. Consider the Cayley Graph of F 〈a, b〉 (Figure 6). Removing the ver-
tex corresponding to the identity gives 4 infinite components. We
can also see that removing all vertices corresponding to elements g
with d(1, g) ≤ n gives 4 × 3n distinct infinite components. Hence
e(F 〈a, b〉) = ∞. It is easy to see that this extends to any free group of
rank at least 2.

Consider any locally compact simplical complex X and finite subcomplex
K. The (open) subcomplex st(K), consisting of all simplices with a vertex in
K is finite. note that for K,L finite if K is a subset of L then n(L) ≥ n(K).
So, we have that n(st(K)) ≥ n(st(K)) ≥ n(K).

Now, any point of (X\st(K) can be joined by a path avoiding st(K)
to a vertex in X \ K. Thus the non-compact connected components are
determined by the 1-skeleton of X. So, when computing e(X) we may ignore
all cells of dimension > 1, and work in the 1−skeleton.

The supports of a cochain are those simplices which are mapped to a
non-zero element of G.

We write C∗(X) for the cochain complex C∗(X,Z2). Now, C∗(X) con-
tains a subcomplex C∗

f (X) of cochains with finite support, that is cochains
with all but finitely many simplices mapped to zero in Z2. Note that C∗

f (X)
is closed under the coboundary operator as X is locally finite. Write C∗

e (X)
for the quotient complex, and H∗

e (X), H∗
f (X) for the cohomology groups of

C∗
e (X), C∗

f (X). The short exact sequence

0 → C∗
f (X) → C∗(X) → C∗

e (X) → 0,

16
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induces the long exact sequence

. . .→ Cn
f (X) → Cn(X) → Cn

e (X) → Cn+1
f (X) → . . . ,

of homology groups. See, for example [12] or [13, pp. 171, 257-259]
As we are only considering the 1-dimensinal structure the quotient cochain

complex is

0
δ0

→ C0
e

δ1

→ C1
e

δ2

→ . . . (1)

So Im(δ0) is just the trivial group and Ker(δ1) is the set of all finite 0
chains with finite coboundary, hence

H0
e (X) = Ker((δ0)/(Im(δ−1)) = Ker(δ0).

However, we can write the 0-cochains with finite coboundary as (δ1)−1(C1
f (X)).

Thus, as we are working in the quotient complex by finite cochains, we have

H0
e (X) =

(δ1)−1(C1
f (X))

C0
f (X)

(2)

Proposition 5.4. Let X be a locally finite simplicial complex. Then e(X) is
the dimension of H0

e (X) over Z2.

Proof: By aboveH0
e (X) = (δ1)−1(C1

f (X))/C0
f (X), the quotient of 0-cochains

with finite coboundary by finite 0-cochains. Now by the argument given
above, to calculate the number of ends of X we need only consider the 1
skeleton of X. That is, consider X as consisting of only 1−cells and 0−cells.

Let c1, . . . , cn define linearly independent elements of H0
e (X) (so each of

these ci gives a linearly independent element in the quotient of cochains with
finite cochains). As each δci is finite, we can choose a finite subgraph K of
X containing the supports of all δci. That is, we can collect all of the finitely
many edges in the δci’s and create a connected 1−dimensional subcomplex
K containing all of these edges.

For every edge, e 6∈ K each ci takes the same value at both ends of e.
This is because δ(ci)(e) is the directed difference in the values of ci at the two
vertices of e. So, for each connected component A of X \K, each ci takes a
constant value ci(A) on the vertices of A. (As any non zero edge is in K).

If there were only r < n infinite components Aj, then, as each Aj has
constant value on all of its vertices we only have r independent blocks of 1’s
and 0’s so if n > r then there is a nontrivial relation Σλici(A) = 0.

This means that Σλici would be a finite cochain contradicting our choice.
(We chose the ci to be linearly independent in H0

e (X))
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Hence, there must be at least n distinct infinite components after remov-
ing K. So we have n ≤ dimH0

e (X) implies e(X) ≥ n
Conversely, if e(X) ≥ n we choose K finite with n(K) ≥ n, and let

A1, A2, . . . , An be distinct infinite components of X −K. Define the cochain
ci to take the value 1 on vertices of Ai and 0 on other vertices of X. Then
if δci(e) = 1, e has one end in Ai, the other in K, by construction of Ai, K.
So, e is one of the finitely many edges of st(K). So each δci is finite by
construction and (as the Ai’s differ pairwise on infinitely many vertices) the
ci are independent modulo finite cochains. Hence H0

e (X) ≥ n. Therefore
e(X) = dimZ2(H

0
e (X)), completing the proof of Proposition 5.4 �

We will now begin a different, entirely group theoretic theory of ends.

Definition 5.5. Given two subsets S, T of the same set U , Boolean addition,
or symmetric difference is defined as follows:

S + T := {x : (S ∪ T ) \ (S ∩ T )}.

Definition 5.6. Let G be a group.
Let PG be the power set (set of subsets) of G.
Let FG be the subset of PG of finite subsets of G.
Define QG = {A ⊂ G : ∀g ∈ G,A+ Ag is finite}.
These sets become groups of exponent 2 under Boolean addition.

We refer to sets, A and B, whose difference lies in FG as almost equal
and write A

a
= B. This amounts to equality in the quotient group PG/FG.

Moreover, G acts by (right) translation on these groups and QG/FG is
the subgroup of elements invariant under this action. Elements of QG are
said to be almost invariant.

For A ⊂ G, let A∗ denote G \ A, the complement of A in G.

Proposition 5.7. Let A ⊂ G be an almost invariant set. Then A∗ is also
almost invariant.

Proof: Suppose x ∈ A∗ + A∗g, which is to say

x ∈ (G \ A) + (G \ A)g = (G \ A) + (G \ (Ag)).

That is x is in one of (G \ A) and (G \ (Ag)). This is equivalent to x being
in one of A and Ag, ie. x ∈ A + Ag. However this is finite, so A∗ is almost
invariant. �

We now come to the group theoretic definition of ends:

18
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Definition 5.8. We define the number of ends of G to be

e(G) = dimZ2(
QG

FG
.)

Remark 5.9. We can now see:

1. If G is finite then all subsets are finite so we immediately get e(G) = 0.

2. Otherwise, G is an infinite set which is invariant (not just almost in-
variant), so e(G) ≥ 1.

For finitely generated groups we can identify this new definition of ends
with the first. Choose a finite generating set S, and form the Cayley graph
ΓS. Clearly this is locally finite and so the first definition of ends applies.

Proposition 5.10. e(G) = e(ΓS) for any finite generating set S.

Proof: Identifying vertices of ΓS with elements of G, we see a correspon-
dence of C0(ΓS) with PG and C0

f (ΓS) with FG. We will show that, if the 0-
cochain c corresponds to the subset A, then δc is finite if and only if A ∈ QG.

Now, δc is supported by the set of edges {(g, gs) : g ∈ G, s ∈ S} with
just one end in A. For fixed s, this means that g belongs to just one of A
and As−1, that is, g ∈ A+As−1. If A is almost invariant, for each s we have
finitely many g. The group G is finitely generated so we have a finite number
of edges in total and A ∈ QG implies that δc is finite.

Conversely if δc is finite, then there are only finitely many edges with one
end in A and one end not in A. Each generator s represents one of these edges
so As differs from A in only finitely many places. Hence, for g ∈ S ∪ S−1,
the class of A in PG/FG is invariant under g. Also, cs corresponding to As
has only finite coboundary.

We proceed by induction. Suppose for any g with dS(1, g) = p we have
the class of A is invariant under g. Then consider h with ds(1, h) = p + 1.
Write h as the product of h′ and s where dS(1, h′) = p and s ∈ S ∪ S−1.
This is possbile as we can choose h′ as the product of the first p generators
of h and then s is the (p + 1)st generator. Now, by induction Ah′ is almost
invariant. Hence, by the argument in the previous paragraph, the class of
Ah is invariant in PG/FG. This completes the induction and we see that
the equivalence class of A is invariant under every g ∈ G. So A ∈ QG if and
only if δc is finite

We have just shown that 0-cochains with finite coboundary correspond to
elements of QG. So, taking the quotient QG/FG corresponds to taking the
quotient of the 0-cochains with finite coboundary by finite 0-cochains. This
is exactly what we noted H0

e (X) to be in Proposition 5.4. �
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This equivalence is useful as the first definition of ends appears to be depen-
dent on a choice of generating set. However, as the second definition does
not use generating sets we can talk now refer to the number of ends of a
group.

We now proceed with one more theory of ends, defined on any topological
space. This generality is useful and the new definition also coincides with
the previous definitions for simplicial complexes (hence Cayley graphs). This
definition comes from Bridson and Haefliger [1, pp.144-145]

First we define some basic properties.

Definition 5.11. A map f : X → Y between topological spaces is said to
be proper if f−1(C) ⊂ X is compact whenever C ⊂ Y is compact.

Definition 5.12. Let X be a topological space. A ray in X is a continuous
map r : [0,∞) → X. If r1, r2 : [0,∞) → X are proper rays, then r1 and
r2 are said to converge to the same end if for every compact C ⊂ X there
exists N ∈ N such that r1[N,∞) and r2[N,∞) are contained in the same
path component of X \ C.

This defines an equivalence relation on continuous proper rays; the equiv-
alence class of r is denoted by end(r) and the set of equivalence classes is
denoted Ends(X). If the cardinality of Ends(X) is m, then X is said to have
m ends.

Proposition 5.13. For Γ a group and S a finite generating set for Γ:
e(ΓS) = sup{n(K) : K a finite subgraph} = |Ends|(Γ)

Proof: Suppose sup{n(K)} ≥ N (Possibly N = infinity)
Then there exists, KN , with n(KN) ≥ N . That is, there exists a finite

subgraph KN of Γ such that Γ \KN has at least N infinite components, Ci.
As the Ci are infinite there exists at least one ray in each. However, in

Γ \ Kn the Ci are not connected, and, in a Cayley graph (a metric space)
this means they are not path connected and all of the rays are in separate
equivalence classes. Hence |Ends|(Γ) ≥ N .

Now suppose |Ends|(Γ) ≥ N then there exists a compact set K such that
for any M ∈ N, ri[M,∞) and rj[M,∞) lie in different path components (for
i 6= j)

If there were fewer than N infinite components then at least two inequiv-
alent rays ri and rj would lie in the same infinite path component. Hence
there must be at least N infinite path components. �

Definition 5.14. LetX be a metric space. By definition, a k-path connecting
x to y is a finite sequence of points x = x1, . . . , xn = y in X such that
d(xi, xi+1) ≤ k for i = 1, . . . , n− 1.
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Lemma 5.15. Let X be a proper geodesic space and let k > 0. Let r1 and
r2 be proper rays in X. Let Gx0(X) denote the set of geodesic rays issuing
from x0 ∈ X. Then:

1. end(r1) = end(r2) if and only if for every R > 0 there exists T > 0 such
that r1(t) can be connected to r2(t) by taking a k-path in X \B(X0, R)
whenever t > T .

2. The natural map Gx0(X) →Ends(X) is surjective.

Proof: Every compact subset of X is contained in an open ball about x0

and vice versa, so one may replace compact sets by open balls B(x0, R) in
the definitions of Ends(X).

Part (1) follows from this observation, because if x1, . . . , xn is a k−path
connecting x1 to xn in X \B(x0, R+k), then the concatenation of any choice
of geodesics [xi, xi+1] gives a continuous path from x1 to xn in X \B(x0, R).

Now we show part (2). Let r : [0,∞) → X be a proper ray. Let cn :
[0, dn] → X be a geodesic joining x0 to r(n) where dn = d(x0, r(n); extend cn
to be a constant on [dn,∞). Because X is proper, the Arzela-Ascoli theorem
[16, pp. 245] gives a subsequence of the cn converging to a geodesic ray
c : [0,∞) → X and it is clear that end(c) = end(r). �

6 Properties of Ends

In this section we state and prove the central results of this paper. These are
that

1. The number of ends of a space is a quasi-isometric invariant.

2. The number of ends of a group is invariant over taking finite index
subgroups and taking quotients by finite subgroups.

3. The only possibilities for the number of ends of a group are 0,1,2 or
infinity.

4. Finally we prove structure theorems for groups with 2 ends.

Definition 6.1. Let (X, d) be a metric space. A geodesic ray in X is a map
c : [0,∞) → X such that d(c(t), c(t′)) = |t− t′| for all t, t′ ≥ 0.

Lemma 6.2. If X1 and X2 are proper geodesic spaces, every quasi-isometry
f : X1 → X2 induces a homeomorphism fε :Ends(X1) →Ends(X2).
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Proof: Let r be a geodesic ray in X1 and let f∗(r) be a ray in X2 obtained
by concatenating some choice of geodesic segments [fr(n), fr(n + 1)], n ∈
N. Because f is a (λ, ε)-quasi-isometry, this is a proper geodesic ray. It is
clear that end(f∗(r)) is independent of the choice of the geodesic segments
[fr(n), fr(n+ 1)].

Define fε : Ends(X1) → Ends(X2) by end(r) → end(f∗(r)) for every
geodesic ray r inX1. The image under f of any k-path inX1 is a (λk+ε)-path
in X2, so, by Lemma 5.15(1) we have that fε is well-defined on equivalence
classes (and that it is continuous). Note that Lemma 5.15 (2) ensures that
fε is defined on the whole of Ends(X1).

Now, it is clear that if f ′ : X2 → X2 are quasi-isometries then f ′εfε =
(f ′f)ε, and if f ′ : X2 → X1 is a quasi-isometric inverse for f , then f ′εfε =
(f ′f)ε is the identity map on Ends(X1). �

The above result tells us that the number of ends of a space is invari-
ant under quasi-isometry. Therefore using Lemma 3.18, we see that for the
purposes of the study of ends, it is meaningful to talk about, Γ, the Cayley
graph of a group. We can also now deduce that a group has the same number
of ends as its Cayley graph because we saw that they are quasi-isometric.

Lemma 6.3. The number of ends of the group Z is 2.

Proof: The number of ends of G is invariant under homeomorphism and
the Cayley graph for (G, {1}) is homeomorphic to R.

Proposition 6.4. If H is a subgroup of finite index in G, e(G) = e(H).

Proof: In the finitely generated case this follows from Lemma 3.19 and the
fact that ends is a quasi-isometric invariant (Lemma 6.2).

For the general case we construct an isomorphism fromQG/FG toQH/FH
and hence show that they have the same number of ends.

So, consider A, an almost invariant subset of G. Suppose h ∈ H then
x ∈ (A∩H)+(A∩H)h if and only if x is in exactly one of A∩H and (A∩H)h,
which is to say x ∈ H and x ∈ (A+Ah). Therefore, (A ∩H) + (A ∩H)h =
(A+Ah)∩H. Now, (A+Ah) is finite for any h ∈ H, so (A∩H)+ (A∩H)h
is also finite and A ∩H is an almost invariant subset of H.

This gives a map, call it π, from QG to QH. Consider the induced map,
φ : QG/FG→ QH/FH.

φ(A+ FG) = ((A ∩H) + F (G ∩H)) = (A ∩H + FH).

The map φ is well defined as if A is almost equal to B, then A∩H is almost
equal to B∩H. Also
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φ((A+B) + FG) = ((A+B) ∩H) + FH

= ((A ∩H) + (B ∩H)) + FH

= (A ∩H + FH) + (B ∩H + FH)

= φ(A+ FG) + φ(B + FG).

So φ is a homomorphism. Choose a set of coset representatives (a left
transversal) T for H in G.

For A in QG, if A∩H is finite then so is Ag−1∩H (A is almost invariant
so Ag−1 is almost equal to A), hence A ∩Hg is. Letting g run through the
finitely many elements of T we see that A (the union of all the A ∩Hg’s) is
finite.

So, π maps only finite sets to finite sets. So the induced map φ maps only
the identity (in QG/FG) to the identity (in QH/FH), that is, φ is injective.

Now, consider any almost invariant B ⊂ H. Define A = BT , so A∩H =
B. For any g ∈ G and t ∈ T , as T is a left transversal we can write
tg = hts (s ∈ T ).

However A + Ag =
⋃
t

(Bt + Btg) so by the above we see that this is⋃
t

(Bt+Bhts). Noting that almost equality is an equivalence relation and as

B is almost invariant Bt+Bhts is finite. Also T is finite so we are taking a
finite union so A + Ag is finite. Thus, A is almost invariant and φ(A) = B
so φ is surjective. �

Let A/K represent {aK : a ∈ A}

Lemma 6.5. If K is a finite normal subgroup of G then: e(G) = e(G/K))

Proof: We will prove that

QG

FG
∼=
Q(G/K)

F (G/K)
.

Consider the natural map p : G → G/K defined by p(g) = gK. This
induces the maps,

pt : PG→ P (G/K) by pt(A) = {aK : a ∈ A}

and
p−1

t : P (G/K) → PG by p−1(A/K) = {a : aK ∈ A/K}).

These give us the required isomorphism.
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The maps are immediately seen to be homomorphisms. We want to show
that they preserve Q and F and are two sided inverses.

Consider B ⊂ G/K. If gK is in B then a coset representative, use g, is in
p−1(B). Thus gK is in ptp

−1(B). Similarly gK in ptp
−1(B) means gK in B.

So ptp
−1(B) = B. Also, a similar argument for A ⊂ G gives p−1pt(A) = AK.

If B is almost invariant then consider p−1(B). For each element of B we
have at most |K| elements in p−1(B). Similarly for p−1(B) + p−1(B)g for
g ∈ G. So, as K finite and B are almost invariant, p−1(B) + p−1(B)g will be
finite for all g ∈ G. Hence p−1(B) is almost invariant.

Now suppose A is almost invariant. Then A+ Ak is finite for all k ∈ K.
Also, there are only finitely many such k so A is almost equal to AK. This
means that AK is almost invariant. Now g ∈ AK if and only if gK ∈ A/K
and similarly for AKg and (A/K)gK. So (A/K) + (A/K)gK finite (as K
finite) and pt(AK) = pt(A) is almost invariant.

We have maps preserving F and Q, so the induced maps between QG/FG
and Q(G/K)/F (G/K) are, as before, homomorphisms and are two sided
inverses, and hence isomorphisms. �

Lemma 6.6. Let A0, A1 ∈ QG. For almost all g ∈ A0, either gA1 ⊂ A0 or
gA∗

1 ⊂ A0

Proof: Choose a finite set, S, of generators of G, and consider (as in Propo-
sition 5.10) the action of G on ΓS. Fix connected finite subgraphs Ci of ΓS

containing δAi.
Now, A0 is almost invariant. Thus given c ∈ G, for almost all g ∈ A0 we

have gc ∈ A0. If not then running through the infinitely many g with gc not
in A would yield infinitely many elements of A0 + A0c.

Given a vertex c of C1, for almost all gc ∈ A0, g ∈ A0. As Ci is finite,
gCi ∩ Ci = ∅ for almost all g ∈ G. Hence for almost all g ∈ A0, we have
gC1 ∩C0 = ∅ and gc ∈ A0 for each vertex c of C1. Thus, by the finiteness of
C1, we can choose some g ∈ G such that these properties hold for all c in C1.

Now, for any collection, A, of vertices of Γ, let A denote the maximal
subgraph of Γ with vertex set equal to A. Each component E of A1 or A∗

1

contains a vertex of C1, so gE meets A0 (by construction of g). If gE also
meets A∗

0 (as C0 contains all edges in the boundary of A0, any set which has
points in A0 and A∗

0 meets C0), it meets C0. However C0 is connected and
disjoint from gC1, so lies in a single component gE. Thus A∗

0 cannot meet
both gA1 and gA∗

1. This completes the proof. �

Definition 6.7. For a group G, and A ⊂ G, the isotropy group H is defined
to be H := {h ∈ G : hA

a
= A}.
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For a subset A of G let A∗ denote the complement of A in G.

Proposition 6.8. Suppose G is finitely generated, and A ∈ QG is such that
both A and A∗ are infinite, and that the isotropy subgroup of A is infinite.
Then G has an infinite cyclic subgroup of finite index.

Proof: Elements of H are either in A or A∗ so if A ∩ H is finite then, as
H infinite, A∗ ∩H is infinite. So, by interchanging A and A∗ if necessary, we
may assume A∩H is infinite as, by Lemma 5.7 if A is almost invariant then
A∗ is almost invariant. We may also adjoin 1 to A.

By Lemma 6.6, for almost all g ∈ A either gA ⊂ A\{1} or gA∗ ⊂ A\{1}.
We want some c ∈ H ∩ A satisfying one of these. However, there are only
finitely many elements of A that do not, so as H ∩ A is infinite it must
contain such a c. Now, c ∈ H gives cA

a
= A, and, A∗ is almost invariant so

cA∗ ∩ A \ {1} if finite. This means that cA ⊂ A \ {1}. We now show that c
generates the required subgroup.

Now, cA ⊂ A \ {1} so c2A ⊂ cA \ {c} ⊂ cA and if n > 0 then

cnA ⊂ cn−1A ⊂ . . . ⊂ cA ⊂ A \ {1}.

Thus, 1 is not in cnA and hence cn 6= 1 for all n > 0, so c has infinite order.
Recall that 1 ∈ A so cn ∈ A for all n > 0. Also cnA ⊂ A \ {1} and

c−n ∈ A would imply that 1 ∈ cnA. We deduce that c−n ∈ A∗ for all n > 0.
Suppose, for a contradiction d ∈

⋂
{cnA : n > 0}. Then c−n ∈ Ad−1 for

all n > 0, c−n ∈ Ad−1 +A, since c−n 6∈ A. However Ad−1 +A is finite and all
the c−n are distinct so this is a contradiction. Hence,

⋂
{cnA : n > 0} = ∅.

Therefore A = (A \ cA) ∪ (cA \ c2A) ∪ . . . or, more formally,

A =
⋃
{cnA \ cn+1A : n > 0}

Which can be written as
⋃
{cn(A \ cA) : n > 0}.

Now, A \ cA is finite (as c ∈ H so A
a
= cA). Also

⋃
{cn(A \ cA) : n >

0} ⊂
⋃
{〈c〉a : a ∈ A \ cA}. This shows that A is contained in the union of

finitely many cosets of 〈c〉 in G.
Replacing c by c−1 we see that A∗ is the union of finitely many cosets also

(by repeating the process we used for A). So, as G = A∪A∗ we see that 〈c〉
has finite index in G. �

Proposition 6.9. If G is finitely generated, e(G) = 0, 1, 2 or ∞.

Proof: Suppose e(G) 6= 0, 1 or ∞. Then, as e(G) 6= 0, the group G is
infinite. By definition of e(G) 6= ∞), the group QG/FG is finite . Also,
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e(G) 6= 1 so QG/FG contains at least 4 elements. One of these is the
equivalence class of ∅, another element is the equivalence class of G. Picking
one of the remaining elements we get an A such that both A and A∗ are
infinite.

Suppose, for a contradiction, H has infinite index in G. Then there would
be an infinite set of cosets ofH, (g1H, g2H, . . .). Taking a coset representative
for each we get giA not almost equal to gjA for all i 6= j. These will all be
almost invariant which would give infinitely many elements of QG/FG which
contradicts our hypothesis. Thus the isotropy group, H, has finite index in
G.

Now we have satisfied the conditions of Proposition 6.8 so G has an
infinite cyclic subgroup, H, of finite index. Also, H is isomorphic to Z. We
noted in Lemma 6.3 that e(Z) = 2 so e(H) = 2. However, Proposition 6.4
gives e(G) = e(H) = 2. This completes the proof. �

Given the above result, it is natural to ask if we can find structure theo-
rems for groups with a specific number of ends. We have already noted that
groups with 0 ends are finite.

Theorem 6.10. Let G be a finitely generated group. The following are equiv-
alent:

1. e(G) = 2,

2. G has an infinite cyclic subgroup of finite index,

3. G has a finite normal subgroup with quotient Z or Z2 ∗ Z2,

4. G = F∗F with F finite, or G = A ∗F B with F finite and

|A : F | = |B : F | = 2.

Proof:

(1) ⇒ (2): Note that the proof of Proposition 6.8 tells us that,

(a) the isotropy subgroup, H, is infinite and that

(b) we can find A and A∗ in QG/FG both infinite. That is, we can
satisfy the conditions for Proposition 6.9 and so G has an infinite
cyclic group of finite index.

(2) ⇒ (1): Lemma 6.3 gives e(Z) = 2, and Proposition 6.4 gives

e(G) = e(Z) = 2.
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(3) ⇒ (4):

(a) If F is a finite normal subgroup of G with quotient Z, then (by
[7]) there exists K ∼= Z such that G is a semi-direct product of F
by K. If the presentation of F is 〈Y |T 〉 then the presentation of
this is 〈Y, t|T, t−1at = f(a), for a in F 〉 that is G = F∗F .

(b) Suppose G/F is isomorphic to Z2 ∗ Z2. Then take the pull-
back of the generators of the Z2 factors. This gives us elements
whose squares are in F . Since F is normal we get two subgroups
A,B of G with F as an index 2 subgroup. Also the intersection
of A and B is F .

Construct a homomorphism, ψ : A ∗F B → G by ψ(A) = A and
ψ(B) = B. By the substitution test ([7]) and the fact that F is
normal in G this extends to a (surjective) homomorphism. Also
suppose ψ(

∏
i,j

aibj) = 1. Then as ψ is the identity on A and B

we get that (
∏
i,j

aibj) = 1 and so ψ is injective. Hence ψ is an

isomorphism. We also noted that |A : F | = |B : F | = 2 and this
proves that (3) ⇒ (4).

(4) ⇒ (3): If G = F∗F with F finite, then F is normal in G with
quotient Z.

If G = A ∗F B, with F finite and |A : F | = |B : F | = 2, then F is
normal in A and in B. Hence F is normal in G and

G/F ∼= (A/F ) ∗ (B/F ) ∼= Z2 ∗ Z2.

(3) ⇒ (1): By [7] Z2 ∗Z2
∼= D∞. So, by Lemma 6.5 e(G) = e(D∞) = 2.

(2) ⇒ (3): We use the existence of an infinite cyclic subgroup, C, of
finite index in G to construct an infinite cyclic group K of finite index
in G which is also normal in G. Let K :=

⋂
g∈G

g−1Cg. Then

h−1Kh = h−1
( ⋂

g∈G

g−1Cg
)
h =

( ⋂
g∈G

h−1g−1Cgh
)

=
( ⋂

g∈G

g−1Cg
)

= K,

so K is normal in G. Also, as C has finite index this is a finite inter-
section. Hence K is infinite cyclic and has finite index in G.

Let G act on K by conjugation and define H to be the centralizer
of K in G. However, for each g in G, conjugating by g defines an
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automorphism of K (as K is normal in G). Thus, as K ∼= Z, there are
only 2 distinct such automorphisms, either preserving the generator or
sending it to its inverse. So |G : H| ≤ 2 hence H CG and H infinite.

Now, H is finitely generated as H is a finite index subgroup of a finitely
generated group. Note that K ≤ Z(H) so as K has finite index in G
Z(H) has finite index in H. However, Z(H) has finite index implies
that its commutator subgroup, H ′, is finite (see, for example, [19]).

Now, as G has a cyclic group of finite index H/H ′ has rank 1. So,
there exists an onto homomorphism φ : H → Z with finite kernel L. If
G = H then G/L ∼= Z and the result is proved.

Suppose G 6= H. Note that L is the torsion subset of H as H has rank
1. L is a normal subgroup of H as it is the kernel of a homomorphism.
Now, as automorphisms preserve the order of elements, L is character-
istic in H. Note that the action of G on H by conjugation gives rise
to an automorphism on H. As L is characteristic in H it is invariant
under this action so L is normal in G.

By the Third Isomorphism Theorem and the fact that |G : H| = 2 we
have

G/L

H/L
∼= Z2

Since G 6= H there exists an element, g ∈ G, which does not commute
with some element k ∈ K. Now, k must be non trivial in G/L because
it has infinite order. However, K is normal in G so g−1kg ∈ K. As g
doesn’t commute with k the commutator k−1g−1kg is not the identity
in K, so has infinite order. Therefore it is a non trivial commutator in
G/L; hence G/L is non-abelian.

Let x ∈ G/L
H/L

be non trivial and let H/L = 〈y〉 (H/L is cyclic). Then

G/L is generated by x and y. G/L is non abelian so x−1yx 6= y.
However as y has infinite order we must have

x−1yx = y−1. (3)

Now, x2 ∈ H/L so
x2 = yk, (4)

for some k. However (3) gives

x−1ykx = y−k (4)
= x−2.

That is
x−1ykx = x−2
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hence
x2 = y−k.

This forces k = 0 hence x2 = 1 in G/L.

Now, G/L = 〈x〉〈y〉 and 〈x〉 ∩ 〈y〉 = {1} but also 〈y〉CG/L. By [7],

G/L ∼= Z oφ 〈x〉

with φ(y) = x−1yx = y−1. This has presentation

〈x, y| x2, x−1yxy〉 = D∞.

By [7] D∞ is isomorphic to Z2 ∗ Z2.

This completes the proof of Theorem 6.10.

7 Applications and More Recent Results

Many interesting results have been proved in the area of infinite (discrete)
group theory and this paper gives only a brief discussion of a small part of
that theory.

With so few possibilities for e(Γ) we naturally ask for characterisations
of the different numbers of ends. Having 0 ends is equivalent to the group
being finite. If e(X) ≥ 1 then it is infinite. Also, we have Theorem 6.10
which characterises groups with 2 ends.

A natural question is to ask what can be said about groups with 1 or
infinitely many ends.

Although the proof lies beyond the scope of this work, the following the-
orem, due to Stallings [22], is fundamental to the field.

Theorem 7.1 (Stallings). Let G be a finitely generated group with infinitely
many ends.

1. If G is torsion-free then G is a non-trivial free product, otherwise

2. G is a non-trivial free product with amalgamation, with finite amalga-
mated subgroup.

There is no such classification for groups with only 1 end.
However, these results allow us to break up some of the theory into smaller

parts. We might, for example, consider some group of isometries of a space
X and then, under the right conditions, the S̆varc-Milnor Lemma 3.16 would
tell us the number of ends of G.
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If G has 2 ends we then apply Theorem 6.10 and we already know some
of the structure of G. If G has infinitely many ends then Stallings’ Theorem
tells us that G is a free product with amalgamation with finite amalgamated
subgroup.

An obvious question posed by the above is, given a group, Γ with e(Γ) > 1,
can we use the above theorems to write Γ as a finite product of groups with
0 or 1 end?

In the case of Γ having 2 ends, as Γ has a subgroup isomorphic to Z of
finite index, we see that writing Γ = A ∗C B or Γ = F∗F gives a free product
of finite groups.

If Γ has infinitely many ends then the answer is more subtle. It is possible
that Γ = A ∗C B where one, or even both of, A and B have infinitely many
(or 2) ends.

An interesting question then is, can this process repeat for ever? Is it
possible that Γ will split infinitely many times, each product being of groups,
at least one of which also have infinitely many ends?

This question can be posed more succinctly by considering the question
of accessibility. We can think of splitting a group over a finite subgroup, that
is writing it as an amalgamated free product, as a sort of factorisation.

Now, we know that if e(Γ) ≥ 2 then there exists such a factorisation. The
natural question is whether such a process can continue forever or whether
it must stop.

Of course, with groups which are not finitely generated the answer is that
the process can continue forever. Consider the free group on ℵ0 generators.
This has infinitely many ends and it is clear that the process of splitting into
free products can continue indefinitely.

This can be formalised with following definitions which come from Scott
and Wall ([18, pp. 189]).

Definition 7.2. A finitely generated group Γ with at most 1 end is 0-
accessible.

If Γ has more than 1 end we can use Stallings’ Theorem or Theorem 6.10
to write Γ as a free product with amalgamation with finite amalgamated
subgroup. If both factors then have at most one end we say Γ is 1-accessible.

We then make the following recursive

Definition 7.3. Define Γ to be n−accessible if Γ splits over a finite subgroup
with each of the factor groups (n − 1)-accessible. A group is said to be
accessible if it is n−accessible for some n.

Theorem 7.4. Grus̆ko’s Theorem [8, pp. 365-372]: Let F be a finitely
generated free group, G = G1 ∗ G2 and let φ : F → G be an epimorphism.
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Then there are subgroups F1 and F2 of F such that F = F1 ∗F2 and φ(Fi) =
Gi.

This tells us that if G can be generated by n elements, then there exists
a set of n generators for G with each element in G1 or G2.

In particular ifG is finitely generated and torsion-free thenG is accessible,
by induction on the number of generators (the case n = 1 being G ∼= Z so
we can apply Theorem 6.10).

We can use these ideas to get a surprising result:

Corollory 7.5. [21] Suppose G is a finitely generated torsion-free group and
suppose G has a free subgroup, F , of finite index. Then G is free.

Proof: Grus̆ko’s Theorem tells us that each factor group has strictly fewer
generators than G. So, using this fact and Stalling’s theorem we see that G
is accessible.

We now proceed by induction on n, where G has n generators. Suppose
G has 1 generator then G is cyclic and hence free.

If G has more than one generator then it has a free subgroup of finite
index. If this is Z then by Proposition 6.4 G has 2 ends. Otherwise F ≤ G
where F is the free group on m generators so by Remark 5.3 and Proposition
6.4 G has infinitely many ends.

If e(G) = 2 then, by 6.10 (part (4)) G = {1} ∗ {1} as G torsion free.
If e(G) = ∞ then G = A ∗ B, a non trivial free product, by Stallings’.

By Grushko’s theorem, A and B are generated by strictly fewer elements.
Subgroups of free groups are free, hence the intersection of A with the free
subgroup is a free subgroup. So by induction A is free. Similarly for B. So
G = A ∗B is free. This completes the proof.

In [2, pp. 449-457], Dunwoody proved that finitely presented groups are
accessible, whilst in [3, pp. 75-78] he provided a counterexample for finitely
generated groups.

We’ve seen with Stallings’ Theorem that groups which split over finite
groups give rise to groups with more than one end. In work around the late
1970s, Bass and Serre [17] developed a theory of more general splittings with
regards to groups acting on simplicial trees. This gave rise to the notion
of ‘graphs of groups’, which are generalisations of free products with amal-
gamation and HNN extensions (although formally, they reduce to repeated
applications of these two concepts). Given this framework, and in the con-
text of groups acting on R-trees (a generalisation of simplicial trees), and also
in the context of the canonical JSJ decomposition of 3-manifolds, Rips and
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Sela [15, pp. 53-109] developed a theory of canonical splittings of finitely pre-
sented groups over virtually cyclic groups (the so-called JSJ decomposition
of a finitely presented group).
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