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Abstract

Recent advances in sequencing and genotyping technologies have caused

an explosion in the availability of DNA data. Recent studies have been

concerned with characterising patterns of diversity and measuring variation

within populations. Understanding these data will require new methodolo-

gies which consider the biological and evolutionary processes that underly

the data.

The evolution of DNA is a complex and highly random process and as

a result the information contained in our DNA sequences about quantities

of interest is difficult to extract. Statistical models provide a framework

in which to understand these data. However it is extremely challenging to

produce models that capture the critical features of the underlying processes

while retaining the simplicity required to perform inference.

The coalescent, introduced by Kingman [1], provides a model of the ge-
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nealogical process under which simulation of ancestral relationships is straight-

forward; this was extended to include recombination by Hudson [2]. The co-

alescent model captures many of the important features of the evolutionary

process and has become widely used in population genetics. Unfortunately

it is difficult to perform inference under the coalescent: the high dimensional

space of genealogies is difficult to explore and when recombination is present

the data does not fully inform these ancestral relationships between individ-

uals.

In this thesis I explore approximations to the coalescent under which in-

ference may be more tractable. I investigate models which greatly simplify

the ancestral process and provide very efficient computational means of per-

forming inference; I also investigate a new model, the Sequentially Markov

Coalescent, which closely mimics the coalescent with recombination.

Using these approximations provides an interesting alternative to full coa-

lescent inference although there may well be considerable improvements that

can still be made. I conclude by describing possible approaches to creating

new approximate models that capture more of the biological reality of the

ancestral process while retaining computational efficiency.
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Chapter 1

Introduction

Genetic data provides a rich source of information about organisms. Our

DNA contains clues to age old questions concerning human history, human

origins, and the differences between humans and other animals. There is also

information about important medical phenomena, such as the co-evolution

of host-parasite systems and locations of genes involved in diseases with her-

itable components. It is therefore important to develop methods which can

extract useful information from our DNA sequences. Unfortunately the DNA

of organisms is affected by highly complex random processes and the result-

ing signals for quantities of interest are often difficult to extract. Statistical

modelling provides a general tool for understanding the patterns of variation

that we observe.

In this thesis I introduce some statistical models that have proved suc-
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cessful in performing population genetic inference. I explore both complex

genealogical models under which inference is extremely challenging as well

as simpler models under which inference is computationally feasible, even for

large data sets. One class of models that has proved useful in many statistical

scenarios is that of Markov models and of Hidden Markov Models (HMMs).

Hidden Markov models are used extensively in this thesis, in particular in

Chapter 2 and as a key component of methods in Chapter 4. In the cur-

rent Chapter I introduce Markov processes and the basic theory of Hidden

Markov Models. I start with a simple example of a Hidden Markov Model

and use this to explain how it can be used to perform efficient and powerful

inference. I then describe some further applications and scenarios where Hid-

den Markov Models have been successfully used to help understand genetic

data.

I also introduce a model for the genealogy of a population sample of ge-

netic data, the coalescent with recombination [1, 2]. The coalescent provides

a prior distribution on genealogies for a sample of size n and allows the ef-

ficient simulation of such genealogies and of population genetic data under

certain simplifying assumptions about demography and the mutation and

recombination processes. At the end of this Chapter I ask how inference can

be performed under the coalescent and explain some of the difficulties with

full genealogical inference.

9



1.1 Markov Processes

Given an ordered sequence of random variables, X1, . . . , XL, we say that the

the Xi form a Markov chain if

P (Xi+1 | X1, . . . , Xi) = P (Xi+1 | Xi) (1.1)

For an in depth discussion of Markov chains and their properties see, for

example, Grimmet and Stirzaker [3]. A simple example of a Markov chain

is the allelic state of a particular locus on the genome. The type in any

individual is determined by the types of its ancestors back in time. However,

given the types of the parents and the mutation and recombination rates,

the distribution of types is independent of earlier ancestors.

Consider a single locus, l, on the genome of a simple idealised bacterium

b1. Imagine that every 20 minutes the DNA in the bacterium is replicated and

a second bacterium splits from the first. Assume that after each replication

the bacterium that retained the original DNA dies. After t generations a very

simple lineage of individual bacteria, (b1, . . . , bt), has been generated. Assume

that there are four possible allelic states at a locus, A, C, G and T and notice

that mutation events at locus l give rise to a Markov Chain X1, . . . , Xt of

random variables representing the type (at l) in each generation.
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It is now possible to construct a matrix, T (i), to describe the pattern of

mutations in generation i in the following way. If the allelic state of bi, Xi,

is j then the distribution of possible states in generation i + 1 given state Xi

in i is denoted by a vector T (i)(j). As these are the only possibilities for the

states in generation i + 1 the elements of T (i)(j) sum to 1. These transition

vectors can then be collected into a matrix T (i), called the transition matrix.

When the transition matrix is independent of i the Markov chain is said to

be homogeneous.

Suppose that rate of mutation between bacterial replications does not

change in time. Dropping the, now redundant, conditioning on i define the

elements of T , T (j → j′), as the transition rate from state j in any generation

to state j′ at the next. The transition matrix allows simple calculation of

the distribution of allelic states after one generation. Given a row vector, vi,

of probabilities (describing knowledge of the allelic states of the bacterium

in generation i) then right multiplication by the transition matrix gives the

correct row vector of probabilities in generation i + 1. Similarly, right mul-

tiplication by T on the vector of probabilities for generation i + 1 gives the

distribution of states in generation i+2. This pair of right multiplications is

equivalent to a single multiplication by the square of the transition matrix.

More generally

P (Xn = j | vi) = [vi × T n−i]j (1.2)
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The theory of Markov chains allows many efficient computations such as

that described above, however that is not the focus of this chapter. The next

section describes the situation where there is an underlying Markov process,

but this process cannot be directly observed.

1.2 Hidden Markov Models

Sometimes the observable data are not Markov but it is possible to construct

Markov models for the underlying processes. A model which is Markov on

these hidden states is referred to as a Hidden Markov Model. Examples are

given in the following sections, but I first introduce the notation and basic

mathematics of Hidden Markov Models.

Consider a Markov Chain X = X1, . . . , XL Suppose that the Xi’s can-

not be observed, and that only the sequence D = O = O1, . . . , OL (these

are emitted by the underlying states) are observed. Define the ith emission

probability, E(i)(oi, xi) by

E(i)(oi, xi) = P (Oi = oi | Xi = xi) ∀(xi ≤ K), (i ≤ L). (1.3)

These can then be collected into a K by L matrix, E . Note that then the

probability of each observed datum is dependent only on the underlying state
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at the same point. This comprises a Hidden Markov Model: a set of possible

underlying states Xi, transition rates between the Xi (given by T ) and a set

of emission probabilities (given by E).

Assuming that the emission and transition rates of a given Hidden Markov

Model are known it is then possible to give a straightforward (albeit compu-

tationally intensive) method of calculating the probability of a set of obser-

vations given these parameters. Using the partition rule:

P (O = o) =
∑

x

P (O = o,X = x) (1.4)

To calculate each of the terms on the right hand side it is often helpful to

break the likelihood for each path into a product over each step in the path.

Consider a possible sequence of underlying states, X = x:

P (O = o,X = x)

= P ((O1, . . . , OL) = (o1, . . . , oL), (X1, . . . , XL) = (x1, . . . , xL))

= P (O1 = o1 | X1 = x1)P (X1 = x1) ×

L∏

i=2

P (Oi = oi | Xi = xi)P (Xi = xi | Xi−1 = xi−1)

= E(1)(o1, x1)T (x1) ×
L∏

i=2

E(i)(oi, xi)T (xi−1, xi) (1.5)
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where T (x1) denotes the probability that the Markov Chain starts in state

x1.

I now introduce an example Hidden Markov Model and some techniques

that can be employed to perform computationally efficient inference using

Hidden Markov Models.

1.3 Inferring Population of Origin in Admixed

Populations

When a population has recently been derived from the mixing of two previ-

ously isolated populations the population is said to be admixed. For example,

individuals of both African and European descent have mixed in the Amer-

icas giving rise to individuals with both recent African as well as European

ancestry.

Given such a population it may be useful to infer the population of origin

along the genome of extant individuals. Models for performing inference

on admixed populations using unlinked markers were developed in 2000 by

Pritchard et. al.[4]. In 2003 Falush et. al. [5] described an extension to this

model designed for data from linked loci.

The model attempts to capture the following (simplified) scenario. A set,
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X (with |X| = K), of ancestral populations have been genetically separated

for enough time for genetic drift and other forces to create significant differ-

ences in allele frequencies. At some recent point in the past, ta generations

ago, these populations mixed giving rise to random mating between individ-

uals within this mixed population. Since admixture, recombination events

have broken up ancestral haplotypes giving rise to individuals with contigu-

ous stretches of genetic material from each population - with the boundaries

of such material lying at the positions of historical recombination events.

These breaks between ancestral chunks occur at a Poisson rate of 1 per Mor-

gan in each generation. So after ta generations the breaks between chunks

have a Poisson distribution with ta breaks expected per Morgan.

Formally, consider n individuals sampled at random from the admixed

population and typed at L loci and suppose that it is possible to obtain

haplotype data. Denote the probability that individual i has directly inher-

ited ancestral material from population k at locus j by P (X
(i)
j = k). Let

q
(i)
k denote the average expected proportion of ancestry from population k in

individual i. The transition rate between state k at site j and state k′ at site

j + 1 is denoted by T j
k→k′(rdj). Then, where r is the recombination rate per

unit distance since the start of admixture and dj is the (physical) distance
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between sites j and j + 1,

T j
k→k′(rdj)

=





exp(−rdj) + (1 − exp(−rdj))q
(i)
k′ if k′ = k

(1 − exp(−rdj))q
(i)
k′ otherwise.

(1.6)

The term exp(−djr) captures the probability of no recombination events

between loci j and j + 1 while the term (1 − exp(−djr)) is the probability

of at least one such recombination. In the former case ancestry at site j + 1

is guaranteed to match that at site j while in the latter case the population

of ancestry is chosen according to the population frequencies. I now drop

explicit conditioning on i for notational simplicity and as the following theory

pertains to general Hidden Markov Models.

Note that the model of recombination described above is a first order

Markov Chain. The ancestry at each site depends only on the ancestry at

the last site (in that individual). However, the ancestral states themselves

are not directly observed. Instead the alleles at each locus are observed and

do not form a Markov chain. Given the population of origin the probability

of observing a particular allele is the population frequency of that allele.

This model of admixture can then be phrased in terms of a standard Hidden

Markov Model from section 1.2. The underlying states are the unknown
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ancestral populations, while the observed states are the alleles at each locus.

The transition rate between pairs of sites is defined by the recombination

fraction (this chain is not homogeneous, the transition rates depend on the

genetic distance between sites, and this is different for each pair of sites).

The emission matrix is defined by the population frequencies in the ancestral

populations.

Given the sequences of a set of individuals in an admixed population it

may be interesting to ask, in each individual, which population of ancestry

their DNA is derived from at each site. Using equation 1.5 it is possible to

work out the joint probability of the data and a path. Then, using Bayes’

Rule, the probability of a given underlying sequence given the data (this

could then be used to calculate the most likely sequence of underlying states,

for example) can be calculated

P (x | D) =
P (D,x)∑
x P (D,x)

. (1.7)

Calculating the likelihoods for each possible sequence of ancestral states re-

quires a sum over KL possibilities. However, it is possible to use the Markov

structure of the underlying states to construct an efficient algorithm that

finds the most likely sequence of underlying states.
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1.3.1 The Viterbi Algorithm

The Viterbi algorithm is a dynamic programming algorithm that finds the

global maximum likelihood sequence of underlying states in a Hidden Markov

Model. To do this it is first necessary to consider the likelihood function for

a given sequence of underlying (ancestral) states, or path, in the presence of

data.

Consider Equation 1.5. It can be seen from this that the likelihood of the

data and a specific sequence of underlying states can be written as the prod-

uct of the likelihood up to some point i and the data and hidden states after

point i. That is, in calculating the likelihood for sites i+1 to L, information

about the hidden states at sites i or earlier is not required. Näıvely we would

like to directly use this equation to recursively derive the most likely sequence

of underlying states site by site, by maximising the terms in this product.

This would provide an algorithm linear in the length of the data. Unfortu-

nately, a direct implementation is not optimal as the likelihood calculations

at each site require knowledge of the underlying states at the previous site.

Instead, the Viterbi algorithm is used, this recursively calculates the most

likely path conditional on the underlying state at each site (see Figure 1.1).

Denote the probability of the most likely sequence of underlying states
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that ends in state k at site j in individual i by P ∗
i (k, j). Then

P ∗
i (k′, j + 1) =

K
max
k=1

(P ∗
i (k, j)T (k, k′)) × E(j + 1 | k′). (1.8)

Normally the likelihood of the most likely path itself is not of interest and

the sequence of underlying states (as in this case) needs to be estimated. For

this purpose a matrix, T ∗ of most likely transitions from state k at site j to

state k′ at site j + 1 is stored. That is:

T ∗
k′,j = argmaxk (P ∗

i (k, j)T (k, k′)) , (1.9)

where ‘argmax’ denotes the underlying state k which maximises the quantity

in parenthesis. The most likely state at the final site is chosen according to:

T ∗
L = argmaxk (P ∗

i (k, L)) . (1.10)

It is then possible to trace-back the most likely sequence of underlying states

as in Figure 1.1. To summarise, suppose we know the frequencies of each al-

lele in each of the K ancestral populations, haplotype data for n individuals

and a recombination map for the regions under study. Then the Viterbi algo-

rithm allows us to efficiently calculate the most likely sequence of underlying

ancestry at every site in every individual under this model of admixture and
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Figure 1.1: This diagram represents the set of possible sequences of underly-
ing ancestry when K = 2. The transition rates depend on the recombination
fraction between each site (according to Equation 1.6), although this is not
shown for notational convenience. Suppose that the most likely path to each
state is marked in red. Then if the most likely path in the data is in state
1 at site j + 1 then it must also be in state 1 at site j. This is because the
path that passes from state 2 at site j to state 1 at site j + 1 leads to a
smaller value at site j +1 and all subsequent calculations are independent of
the path taken to site j + 1. In this way, given the knowledge that the most
likely path is in state 1 at site j + 1 it can be inferred that it is also in state
1 at site j and in state 2 at site j − 1 and so on. Note that the most likely
state at site j cannot, in general, be inferred until the most likely state at
site j + 1 is known.

linkage.

1.3.2 Posterior Decoding

The Viterbi algorithm guarantees to find the globally most likely sequence

of underlying states, however, often measures of uncertainty in estimates or

even the full posterior distribution of underlying states are required. In the

case of admixture it may be important to know in which regions ancestry is

well defined and where there is little certainty about the parent population.

Perhaps an ideal answer would be to give the full posterior probability of
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each locus in each individual being derived from each of the K populations.

The following section describes how this can be achieved.

The Forward Algorithm The forward algorithm is an efficient algo-

rithm for calculating the likelihood of a set of data under a Hidden Markov

Model that takes time quadratic in the number of underlying states and lin-

ear in the length of the data. This is often useful in itself, but is also the

first step in calculating the posterior distribution of underlying states.

The underlying states are viewed as missing data, using the partition

law it is then possible to write an expression for the likelihood, this involves

summing over all possible sequences of underlying states,

P (D) =
∑

x∈X

P (D | X = x)P (x) (1.11)

where X denotes the set of all possible underlying sequences X. However, for

K states and data of length L a direct calculation of the quantity requires

a sum over KL terms which is, of course, impractical for most data sets of

interest.

Instead of a straightforward sum over all paths, it is preferable to use

the forward algorithm. This calculates the sum over all paths so that the

time taken is linear in the length of the data. Define Pi(k, j) to be the joint

probability of the data for individual i when only using the data up to site
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j, with underlying state k at j. Then

Pi(k, j + 1) = E(j+1)(oj+1, k) ×
K∑

k′=1

Pi(k
′, j)Tk′,k. (1.12)

These terms are recursively calculated for all j ≤ L and the probability

of the data, for each individual, is given by
∑K

k=1 Pi(k, L). Individuals are

assumed to be independent so the likelihood of the data is the product of

these likelihoods for each individual. Note the similarity between equations

1.8 and 1.12. The reasoning behind both is precisely the same, but the

forward algorithm calculates the probability summed over all paths, instead

of finding the maximum likelihood path.

The Backwards Algorithm The backwards algorithm does not have

such an intuitive interpretation as those of the forward and Viterbi algo-

rithms. Informally the backward algorithm performs exactly the same cal-

culations as the forwards algorithm, but in a different order. More formally,

denote the value of the backwards algorithm for individual i at site j in state

k by Bi(k, j). Then define Bi(k, L) = 1, ∀k and

Bi(k
′, j − 1) =

K∑

k=1

Bi(k, j)Tk′,k × E(Oj | Xj = k) (1.13)
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Note then that

P (D) =
K∑

k=1

Pi(k, j) × Bi(k, j), ∀j. (1.14)

The backward algorithm greatly increases the range of questions that can

be asked of the data, such as: what is the joint probability of the data with

state k at site j? To answer this question it is necessary to calculate the

backwards quantity to site j in state k and the forwards quantity to site j in

state k. The product of these terms gives the probability of the data given

state k at site j. That is:

P (D,Xj = k) = Pi(k, j) × Bi(k, j). (1.15)

This may be easiest to understand by considering Figure 1.2.

Suppose we now want to know the quantity P (Xj = k | D), this can be

calculated exactly (under the model) by using Equation 1.15 in conjunction

with Bayes’ rule:

P (Xj = k | D) = P (D | Xj = k)P (Xj = k)/P (D)

= P (D,Xj = k)/P (D). (1.16)

This procedure is highly efficient as it is necessary to perform the forward

and backward algorithms only once each. Then the above equation allows
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Figure 1.2: This diagram gives a pictorial representation of how the forward
and backward algorithms can be combined to produce the probability of the
data given state k at site j. The terms preceding site j, calculated by the
forward algorithm calculate the probability of the data using only information
up to site j. Also, the contribution from state 2 at this site is not included.
When the product with the result from the backwards calculation is taken
the set of transition and emission probabilities in constructing this value
correspond precisely to those that would be subsequently calculated by the
forward algorithm if it continued past site j but did not include terms from
state 2 at this point.

the straightforward calculation of the vector of all posterior probabilities.

This calculation was performed on high quality human data by Patterson

et. al. [6] producing Figure 1.3

1.4 The Lander and Green Hidden Markov

Model

In 1987 Lander and Green [8] published a paper introducing one of the first

Hidden Markov Models to genetics. The problem concerns constructing a

linkage map based on pedigree data. Unlike in the case of admixture map-
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Figure 1.3: This Figure comes from Patterson et. al. [6] and shows the
posterior probability of ancestry from the African and European founder
populations. The data here is diploid and so there are 3 cases - homozygous
for African inheritance, homozygous for European or heterozygous. The
data comes from Smith et al [7] and the ancestry is derived from 52 SNPs on
chromosome 22. The blue dotted line indicates the posterior probability of no
European Ancestry alleles at this locus. The green line shows the probability
of one allele of European origin while the red line gives the probability that
both alleles are of African Origin.

25



ping above much of the family structure of the individuals in the sample is

known here. The information about recombination is gleaned from inferring

specific switches between maternally and paternally inherited loci in a sin-

gle individual. The recombination fraction is then simply calculated as the

expected number of switches inferred at each site.

At each site on each of an individual’s haploid chromosomes it is impor-

tant to know whether the site was maternally or paternally derived. Given

this information it is then possible to observe recombination events (see Fig-

ure 1.4). However, it is not always possible to distinguish between the mater-

nal and paternal types at each locus. Often the type donated to the child is

present in both parents, also genetic data does not include information about

the phase of the genotype. Not knowing which type each individual parent

had, or which type has been passed to the child can make it impossible to

infer recombinations even when the full haplotype data are informative (see

Figure 1.5).

Lander and Green introduced a Hidden Markov Model for these unknown

patterns of inheritance (given the recombination fractions). Their algorithm

for inferring recombination fractions combined this Hidden Markov Model

with the expectation maximising (EM) algorithm which iteratively proposes

new recombination fractions based on the inferred ancestry given the previous

set of proposed fractions. This approach allowed the computation to be
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Figure 1.4: In this mock data set the sequences of coloured boxes represent
haplotypes, the colours indicate different types. On the left is the paternal
chromosome and on the right is the maternal chromosome. If the progeny are
observed to have the haplotype displayed underneath then a recombination
between the first and second sites can be inferred as the inherited material
is paternal to the left of this site and maternal to the right. In most studies
there would be many triples, achieved both by typing multiple generations
as well as many pairs in each generation.

completed in a short period of time when the pedigree is of small size, even

for large numbers of loci. I now consider the problem of calculating the

expected number of recombinations given (unphased) genotype data and a

vector of recombination fractions. This is a required step in performing the

EM algorithm. In their paper [8] Lander and Green use a compact matrix

notation to describe the dynamic programming algorithms. I attempt to

rewrite the algorithm in the same style as the models described above.

Consider a set of n genotyped individuals with parents who have also been

genotyped; such individuals are referred to as non-originals in the Lander and

Green paper. It is only in these individuals, that have parents in the sample,

that recombination events can be inferred. Each individual is typed at L loci

in between which are L− 1 points at which recombination events could have

occurred. The recombination fraction between two sites is the probability
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Figure 1.5: In the above diagram there are two parents and two offspring,
all typed at two loci. On the left is the paternal parent and the right is the
maternal. In this diagram the paternal parent donates the material for the
lower of the two sequences and the maternal to the higher. Given child C1

(left) no recombination need be inferred as the maternal contribution comes
from one chromosome in the mother, likewise with the paternal contribution.
However, for child C2 recombination is required as both the maternal con-
tributions and the paternal contributions are recombinant. Without phasing
information the difference between C1 and C2 is invisible. Both parents have
genotypes {1, 1} and both children have genotypes {2, 1}.

of inheriting the genetic information at these sites from different parents in

a single generation. Let r = {r1, . . . , rL−1} be the vector of recombination

fractions between each pair of adjacent sites. Throughout this description I

index sites by the letter j and individuals by the letter i. For each site define

a binary vector vj (of length 2n) which denotes the inheritance of individual

i at site j by vi,j = 0 if the gamete inherited its DNA from the parent’s

paternal chromosome and vi,j = 1 otherwise.

In the pedigree, some individuals will be both children and parents of

other individuals in the pedigree. For this reason, the paternities at each site

are non-independent. Although it would be simpler and faster to take each

individual separately this non-independence makes it necessary to consider
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the vectors vj as a whole, these are the underlying states at each site. The

transition rates are independent between individuals and the prior probability

of a transition between any two adjacent sites, j and j + 1, in any individual

is precisely the recombination fraction rj. There are 22n possible inheritance

vectors at any given site and so the formal transition matrix between each

site is of size 22n by 22n. For a given pair of sites, j and j + 1, the transition

probability between inheritance vectors vj = a and vj+1 = b is denoted by

ta,b
j and is the product of the individual transition rates in each individual.

This leads to the simple formulation that, where d denotes the number of

parental differences between a and b,

t
(a,b)
j = rd

j × (1 − rj)
2n−d (1.17)

Denote the emission probabilities given that vj = a by qj,a so that

qj,a = P (Dj | vj = a) (1.18)

Where P (Dj) refers to the probability of the genotypes (at site j) in the

non-originals conditional on the types of the individuals with no parents in

the sample. Note that it is straightforward to calculate the probability of

observing each child’s genotype conditional on the inheritance vectors and
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phase of the parents. Given probabilities for each phase it is then possible

to calculate the likelihood for each child as a sum over all possible phases.

Note that by phase I mean here that for each site it is known whether it

was maternally or paternally derived - not simply which pairs of sites are

inherited from the same individual.

It is now possible to use the forward and backward algorithms to calculate

the probabilities pj,a of underlying state a at site j. The forward algorithm

recursively describes the joint probability of the data up to site j + 1 with

underlying state vj+1 = b in the standard way:

P (Dj+1 | vj+1 = b) = qj+1,b

∑

a

P (Dj | vj = a)ta,b
j . (1.19)

For shorthand denote P (Dj | vj = a) by F (vj = a). The ‘backward’ quanti-

ties at each site, B(vj = b) are then calculated by defining B(vL = b) = 1, ∀b

and recursively calculating

B(vj = a) =
∑

b

B(vj+1 = b)ta,b
j qj+1,b. (1.20)

This then gives

pj,a =
F (vj = a) × B(vj = a)

P (D)
(1.21)

where P (D) is calculated by
∑

a F (vL = a).
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To calculate the expected number of recombinations between each pair of

sites requires a a further dynamic programming step. Note that, in general,

the expectation of a discrete random variable, X, is simply:

E(X) =
∞∑

i=0

P (X = i)i (1.22)

With this in mind define d(a, b) to be the number of parental switches between

configurations a and b. Then the expected number of recombinations between

sites j and j + 1 is

E(Rj,j+1) =

∑
a,b F (vj = a) × B(vj+1 = b)qj+1,b × ta,b

j d(a, b)

P (D)
. (1.23)

Informally this is the probability of the data and state a at site j, and state

b at site j +1 divided by the unconditional probability of the data (which by

Bayes rule is the probability of those underlying states given the data). This

is then multiplied by the number of recombinations given this transition and

summed over all possible underlying states to produce the expected number

of recombination events in this interval.

Lander and Green use the EM algorithm to explore the space of possible

recombination fractions. In this case the procedure is straightforward: Given

a set of recombination fractions rold, use the HMM to calculate the expected
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number of recombinations. Set rnew as the maximum likelihood estimate of

the recombination fractions given the expected number of recombinations

(which is straightforward). This procedure is repeated until the likelihood

converges to a maximum.

1.5 The likelihood of Data given a Genealogy

One natural method of calculating the likelihood of genetic data involves

first constructing a genealogy (or genealogies) that may have given rise to

the data and then calculating the likelihood of the data given the genealogy.

This approach might involve the calculation of a maximum likelihood tree, as

often done in phylogenetics [9]. Alternatively multiple trees might be sampled

from a probabilistic distribution usually utilising a model of ancestry and

conditioning on the data. It is therefore necessary to be able to calculate the

likelihood of the data given a genealogy (see Figure 1.6). In 1973 Felsenstein

developed a dynamic programming algorithm to perform this calculation.

The allelic states on a lineage form a Markov Chain and this leads to

a natural Hidden Markov model for the probability of genetic data given a

genealogy. The observed data is the types of each individual at each site in

the present. The hidden states are the types at internal nodes and transition

rates are defined by the mutation model. Nothing is observed at the internal
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Figure 1.6: This diagram shows an example genealogy where calculating the
full likelihood given the genealogy involves a sum over many possible states
for the internal nodes. For example, it is not clear what the ancestral states
are at nodes 1 and 2. Just as in previous dynamic programming approaches
the trick is to calculate the joint likelihoods at each node for each possible
underlying states.

nodes so the emission probabilities are always 1 at internal nodes. At the leaf

nodes the data is directly observed and the emission probabilities are trivial

(see Equation 1.24).

Suppose we are given a tree for a given set of n sequences of L sites.

Suppose also that we have a mutation model that allows the calculation of

the probability of a transition from base a to base b in a given time t along

a single branch, P (a → b)t. It is also necessary to assume that

1. The transition rates are independent between branches on the tree

2. The transitions are independent between sites

Note that the likelihood for the whole data can be expressed as a product

of the likelihoods from each site; I now describe the method for calculating
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the likelihood at a single site. Denote a node by ν and the genealogy by

G. Given a set of n types at the leaves, xν (defined only at the leaf nodes),

we wish to calculate the joint likelihood for each node and its state, s(ν).

Denote this likelihood by P (s(ν) = a | G) and note that it can be calculated

recursively according to the following scheme: If the node is a leaf node then

P (s(ν) = a | G)

=





1 if a = xν

0 otherwise.

(1.24)

If the node is not a leaf node then it has two daughter nodes ν1 and ν2 and

associated branch lengths t1 and t2 respectively. Then P (s(ν) = a | G) =

∑

b,c

P (s(ν1) = b | G)P (a → b)t1 × P (s(ν2) = c | G)P (a → c)t2 . (1.25)

The likelihood of the data given the genealogy is then

P (D | G) =
∑

a

P (s(ν(r)) = a | G) (1.26)

where ν(r) is the root node in the tree.

In the same way as before there is an exact analogue between this method

for calculating the probability of the data given the genealogy and a method
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for calculating a most likely set of underlying types at each node - the Viterbi

algorithm. Let V (s(ν) = a | G) denote the likelihood given a most likely

set of underlying states up to node ν and with state a at node ν. Then

V (s(ν) = a | G) = P (s(ν) = a | G) for all leaf nodes and if ν is not a leaf

node then V (s(ν) = a | G) =

max
b,c

V (s(ν1) = b | G)P (a → b)t1 × V (s(ν2) = c | G)P (a → c)t2 . (1.27)

In order to trace-back a most likely set of underlying states it is necessary

to record the types at each daughter node which gave rise to the highest

likelihood at each internal node conditional on each state at that node,

ν(b∗, c∗ | a):

ν(b∗, c∗ | a) = argmaxb,c V (s(ν1) = b | G)P (a → b)t1×V (s(ν2) = c | G)P (a → c)t2 .

(1.28)

It is also possible to sample from the posterior distribution of underlying

states using the analogous forward-backward methodology described in Sec-

tion 1.3.2. The backward algorithm starts at the root node and works to-

wards the leaf nodes and then the product of the terms from the forward

and backwards algorithms at each node are used to produce samples at that

node.
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I now discuss an important population genetic model, the coalescent,

which traces the ancestry of a sample backwards in time to the most recent

common ancestor. The coalescent, while a considerable simplification of the

ancestral process, is unfortunately not amenable to the efficient inference

techniques used so far in this chapter. Performing inference under this model

is a central topic in the rest of this thesis.

1.6 The Coalescent

Suppose we are given haplotype DNA data from unrelated individuals from

a single, neutrally evolving population. There may be many questions we

would like to ask: is there population substructure, and if so, what are the

levels of migration? Perhaps we wish to know about population history, to

identify the geographical origins or to find evidence for recent expansion or

decline in a population. Also biological processes, such as mutation and

recombination events, may be of interest. Finally it may be important to

find links between observed phenotypes (eg. diseases) in individuals and

the sequence data, to uncover the underlying genes and hence mechanisms

involved.

In analysing such data knowledge of the underlying genealogy would

greatly simplify the problem of inference. Population substructure and his-
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tory would of course become apparent while estimation of rates would involve

merely counting events in the genealogy and measuring the total evolutionary

time. Studies designed to find associations between phenotypes and genetic

type would also be greatly aided by genealogical information; unfortunately

the genealogy of a random set of individuals in a population is usually impos-

sible to observe. It is also usually impossible to directly infer the genealogy

using the data, not least because the process of recombination causes the

relationships between individuals to change across loci.

One approach to solving this problem is to design statistical models which

approximate the ancestral process. Early models such as the Wright-Fisher

[10] or Moran [11] traced a finite population of fixed size forwards in time.

Such models, while drastic simplifications of real populations, capture many

important features of the evolutionary process and provided the basis for

theoretical insights and a foundation for population genetics. Many other

models have also been proposed, but in this thesis I focus on the Coalescent,

introduced by Kingman in 1982 [1].

1.6.1 The Coalescent with Recombination

The Coalescent models the history of a (finite) sample of n individuals back-

wards in time. The simple coalescent assumes a neutral population of size N
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(where N is very large compared to n) of constant size with random mating in

continuous time. This model can be derived as the limit of the Wright-Fisher

or Moran models with an appropriate scaling of time, although it might be

viewed as a simple model of evolution in its own right. It is possible to

extend the coalescent to include recombination, and in this thesis I follow

the method proposed by Hudson in 1983 [2]. For reasons of simplicity it is

assumed here that the rate of recombination is constant along the length of

the chromosomes.

The ancestry of the sampled chromosomes is traced backwards in time

until every site on all of the lineages has reached a common ancestor. At

any point in time a pair of lineages can undergo a coalescence event, where

the two lineages merge into one. Also a single lineage may recombine, in this

case the lineage is split into two separate lineages. To see why recombination

events cause lineages to split backwards in time it may be useful to consider

the effect of recombination when lineages are traced forwards in time.

Recombination allows the genetic material of descendant chromosomes to

be comprised of a combination of two extant chromosomes (see Figure 1.7).

To the left of the recombination break point the material is directly descended

from one parent chromosome, to the right the material is descended from the

other. If genetic information is passed directly from an extant chromosome to

a descendant chromosome at a particular locus, then the parent chromosome
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Figure 1.7: Recombination forwards in time: Chromosomes A and B recom-
bine to produce chromosome C. The recombination event occurred at R and
A is ancestral to C to the left of R while B is ancestral to C to the right.

is said to be ancestral to the descendant chromosome at that locus. For any

given lineage we denote the loci at which it is ancestral to a chromosome in

the sample as ancestral material

When tracing lineages backwards in time recombination events cause

chromosomes to be split at a locus. Each resulting chromosome will have

ancestral material only on at most one side of this split, see Figure 1.8. It

is only important to trace those lineages which hold some material that is

ancestral to a chromosome in the original sample. The process keeps track

of the ancestral material in each lineage and only events which affect the

history of ancestral material are considered. When a coalescent event occurs

between two lineages the set of loci on which the new lineage has ancestral

material is the union of the set of loci with ancestral material on those lin-

eages. The process stops when every point on the sequence has reached its
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Figure 1.8: Two Recombination events, backwards in time: blue denotes
ancestral material. On the left a recombination occurs within ancestral ma-
terial and this is then split to create two further lineages. The event on the
right does not affect the history of ancestral material so is not considered in
Hudson’s formulation of the process.

most recent common ancestor (MRCA). The time taken to reach the most

recent common ancestor ancestor at a site is denoted by ‘tMRCA’.

A formal description of the coalescent with recombination follows, it is

first necessary to define my notation:

• n : The initial number of chromosomes in the sample

• k : The number of lineages active at a given time

• Ci : The ith lineage

• xi : The set of intervals on which Ci has ancestral material

• mi : The number of intervals of ancestral material on the chromosome

Ci

• λC : The instantaneous rate of coalescence at any given time
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• λR : The instantaneous rate of recombination at any given time

• Ii,j : Indicator function indicating whether chromosomes i and j can

coalesce

• r : The per generation recombination rate

• Ne : The effective population size

• ρ : =4Ner, the population scaled recombination rate

The process is Markov in time so that only the rate of coalescence, λC , and

recombination, λR, events are required to calculate the distribution of the

time to, and type of, the next event. The instantaneous coalescent rate

λC =
∑

i6=j

Ii,j = k(k − 1)/2. (1.29)

Write xi = {(xi,1, yi,1), . . . , (xi,mi
, yi,mi

)} where the xi,j and yi,j indicate the

upper and lower bounds of the jth interval on the ith chromosome. It is a triv-

ial extension to allow the boundaries of these intervals to lie on a genetic map

to allow for recombination rate variation. The instantaneous recombination

rate is

λR = ρ/2
∑

i

(yi,mi
− xi,1). (1.30)

The time to the next event is exponentially distributed with rate λC + λR.
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The next event is a coalescence with probability λC

λC+λR
and is otherwise a

recombination event. In the case of a coalescence event two lineages, i, j,

are chosen uniformly and at random from those with Ii,j = 1. The resulting

lineage has ancestral material at the union of loci where the lineages i, j had

ancestral material. In the case of recombination a point is chosen uniformly

on (xi,1, yi,mi
) to produce two lineages, each with ancestral material from one

side of the split.

At the start of the process k = n, mi = 1, xi,1 = 0 and yi,1 = 1 for all i.

The process stops when a most recent common ancestor has been found at

all sites. An example genealogy is given in Figure 1.9

Compared with the biological reality of the evolution of species, the coa-

lescent is a very simple process. The coalescent assumes panmictic mating, in

real populations there is complex substructure, due to many factors, acting

at both large and small scales. The coalescent with recombination requires a

large fixed population size. It is also assumed that the sample size is (very)

small compared to the population size (really the ‘effective population size’

due to Wright [12, 13], although this is not discussed here). Two specific

consequences of this, under the coalescent are that

1. No more than two lineages can coalesce at any instant

2. Recombination events never occur between a pair of lineages in the

42



Non Ancestral

Type 2

Reached MRCA (Type 2)

Mutation to Type 1

Mutation to Type 2

Type 1

Reached MRCA (Type 1)

Figure 1.9: This diagram shows an example genealogy with both mutation
and recombination events. Lighter colours at a site indicate that the marginal
most recent common ancestor has been reached at that site.
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sample. Instead the second ancestor of a recombinant chromosome is

always assumed to be non ancestral.

Some modern data sets are starting to challenge these assumptions. Case

control studies involve thousands of individuals. Furthermore, in the presence

of high levels of recombination (as expected over large genomic regions) the

number of ancestors at some point in the past may be far in excess of the

sample size. This means that multiple simultaneous coalescence events or

recombinations between individuals in the sample are no longer unlikely.

Of course, all models must make approximations and the importance of

the coalescent in population genetics rests on its ability to simply capture

the evolutionary process and to elucidate important information from the

data. While it is hard to provide a great deal of evidence that the coales-

cent model has achieved this goal it has been widely used within population

genetics for many years. Coalescent theory has allowed the construction of

summary statistics and simplified models that are used to find evidence for

population structure, and infer aspects of human history. Perhaps most con-

vincingly: coalescent based recombination rate estimates from McVean et al.

[14] show high levels of agreement [15] with previous pedigree analyses and

more recent direct experimental approaches such as those of Jeffreys et al.

[16]. Although the appropriateness of the coalescent to natural populations
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is worth considering I assume for the rest of this thesis that the coalescent

provides a reasonable model for inference on population genetic data.

Having decided that the coalescent model is a reasonable model for the

ancestry of a sample I turn to the question of performing inference. The

coalescent might be described as a simple model, both because of the approx-

imations mentioned above, but also because of the ease and computational

efficiency of simulating coalescent genealogies. Unfortunately inference un-

der the coalescent is much less straightforward. The most powerful methods

of performing statistical inference involve calculation of the likelihood of pa-

rameters of interest. This is problematic under the coalescent because of

the enormous state space of genealogies. The likelihood of the parameters,

θ, can only be calculated precisely through an integration over all possible

genealogies:

L(θ | D) = P (D | θ) =

∫
P (D | G, θ)P (G)dG. (1.31)

Direct likelihood calculations based on attempting to evaluate this integral

(eg. a recursive method due to Griffiths and Marjoram as part of their

paper in 1996 [17]) fail in all but the simplest of scenarios; the summation

takes infeasible amounts of computing resources for most data sets of interest.

Another approach is to use Monte Carlo estimates of the likelihood, the most
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direct approach approximates Equation 1.31 using the formula:

∫
P (D | G, θ)P (G)dG ≈

1

M

M∑

i=1

P (D | G, θ) (1.32)

where the genealogies are simulated from the coalescent prior.

Equation 1.32 gives an extremely poor estimator of the likelihood as most

of the genealogies are incompatible with the data. These incompatibilities

lead to insignificant contributions to the likelihood from the vast majority

of simulations. One method of improving the estimator is to use Markov

Chain Monte Carlo (MCMC) techniques (see eg. [18, 19]). Unfortunately

these methods remain impractical as it is not known how to construct a

chain that converges in reasonable time. Alternatively importance sampling

can be used to generate only genealogies compatible with the data. This

approach is used in conjunction with the recursion described in Griffiths and

Marjoram to provide a more computationally tractable approach. More ef-

ficient importance samplers have recently been developed by Stephens and

Donnelly [20], in the absence of recombination, and Fearnhead and Donnelly

[21], which includes recombination. These methods, while sizeable improve-

ments on previous methods, are also computationally intractable except for

very small data. This is discussed in more detail in Chapter 4.

This thesis explores the possibility of using approximations to the coales-
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cent process to provide more computationally efficient means to calculate the

likelihood of the data. In 2000 Stephens and Donnelly suggested a model of

evolution that could be used to approximate the probability of observing a

haplotype given a pre-existing set of haplotypes in the absence of recombina-

tion. This model is based on the notion that the haplotype can be constructed

as an imperfect copy of the previous haplotypes and is sometimes known as

the ‘Look down and Copy’ model (of sequence evolution). In 2001 the Look

down and Copy approach was extended by Fearnhead and Donnelly to in-

clude recombination. They introduced a Hidden Markov Model that was

adapted by Li and Stephens to produce a fast algorithm that approximates

the likelihood of a set of population genetic data. The likelihood is calculated

using a product of these approximate conditionals and is often referred to as

a PAC likelihood.

This model has caused widespread interest and many methods (see eg.

[22, 23]) have been designed which take advantage of its computational ef-

ficiency, although most have not yet been published. Although the scheme

can be used to tackle a wide range of questions in population genetics that

have previously been computationally impractical, the underlying model suf-

fers from both theoretical and practical drawbacks that affect accuracy. In

Chapter 2 I investigate possible alternatives to the scheme proposed by Li and

Stephens. I also analyse the strengths and weaknesses of the PAC approach
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and the limitations imposed by using models of this form.

In Chapter 3 I propose a new model, the Sequentially Markov Coalescent

or SMC, for the ancestry of a population in the presence of recombination.

This model approximates the coalescent with recombination and involves a

simple alteration to the coalescent. I prove that this alteration gives rise to

Markovian structure when genealogies are generated along sequences. The

state space of genealogies is also much reduced under this model in the pres-

ence of high recombination rates. In Chapter 3 I investigate the properties

of this model, how well it approximates the coalescent. I look both at the

properties of genealogies sampled under the SMC and of data simulated using

it.

Having introduced a new approximation to the coalescent I investigate

the potential for population genetic inference under the SMC in Chapter 4.

While there are many possibilities for using the structure of the SMC to

improve computational efficiency, investigating even a handful of these fully

is beyond the scope of this thesis. I focus on the method of genealogical

sequential importance sampling - following the method of Fearnhead and

Donnelly [21] from 2001.

The primary goal of Chapter 4 is to compare inference under the SMC

to the coalescent. I also investigate the performance, limitations and poten-

tial for improvement of genealogical importance sampling. The performance
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improvement that might be expected under the SMC depends broadly on

the quantity of data that can be analysed using this technique and so im-

provements to this method will impact on the ability of the SMC model to

improve inference.

Finally, in Chapter 5, I discuss the conclusions I have arrived at after

performing the analyses here and suggest possible improvements for future

methods designed to perform inference on recombinant population genetic

data.
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Chapter 2

Non Genealogical

Approximations to the

Evolutionary Process

2.1 Introduction

Although much can be learned from population genetic data, it is often hard

to extract accurate estimates of quantities of interest [20, 24]. In most cases,

the full signal for evolutionary parameters or other important quantities, such

as recombination rates or the phase of diploid genotype data, can only be

extracted by modelling the complex evolutionary history of the data. The

highly stochastic nature of the processes involved and the weak information in
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recombinant data about the ancestry creates a situation where full inference

is extremely computationally intensive, even for small data sets. Approxi-

mations are therefore required and in constructing these approximations it is

important to capture the key features of the process and the stronger signals

in the data, but to avoid modelling those complex processes which contribute

little extra information about the parameters of interest.

The best current methods for performing full likelihood inference on pop-

ulation data use a Monte Carlo average from genealogies simulated under the

coalescent model of ancestry [20, 21, 18, 19]. Unfortunately, using current

methods the number of genealogies required to get an accurate estimate of the

likelihood grows extremely fast as the size of the data increases; these meth-

ods are prohibitively computationally expensive for anything but the smallest

data sets. However, by understanding the properties of more complete mod-

els it may be possible to design new approximate models which capture more

of the information in the data. Theoretical properties of the ancestral pro-

cess and the distributions of certain quantities (such as the distribution of

the evolutionary time between a pair of sequences) can be calculated under

the coalescent and used to inform new approximations. The key is to capture

the primary features of the processes leading to genetic variation data while

simplifying the mechanism in order to produce computational efficiency.

The models under discussion in this chapter all describe the distribution
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of the type of a new sequence conditional on having observed a pre-existing

set of sequences. The models try to capture certain features of the coalescent

process:

• Under the coalescent a new sequence would show high degrees of local

similarity to those already in the sample, however the new sequence

might be most closely related to different sequences along its length.

The rate that these changes between sequences occur is a function of the

recombination rate. The parameter ρ in these models directly affects

the probability of switching between the ‘inherited’ sequences in the

sample.

• Under the coalescent process the rate of coalescence rises faster than

the rate of recombination or mutation as the sample size increases.

To capture this the approximations here all propose sequences more

similar to those in the sample when the sample size is large.

• There is a correlation between the density of mutations on a new se-

quence and the distances between recombination events, this correla-

tion is due to the effect of the evolutionary time separating the se-

quences. For example sequences separated by a short evolutionary

distance will show a low density of allelic differences and share large

regions unbroken by historical recombination events.
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• Under the infinite sites model it is possible for the data to be incom-

patible with a single tree, and it is therefore possible to be certain

that recombination events have occurred in the history of the sample.

Approximate models should capture this strong form of evidence for

recombination. It is also important to avoid inferring recombination

when little or no evidence for recombination is present.

Not all of these features are captured by all of the models and none of them

correctly interpret the signal for recombination given by incompatibilities.

These qualities are discussed in more detail later.

2.2 Li and Stephens

In 2003 Li and Stephens [22] developed a model to approximate the process

of inheritance. This model allows fast inference on data with recombination,

even for large data sets.

Let h1, . . . , hn denote n sampled haplotypes, typed at L bi-allelic loci.

The key observation made by Li and Stephens is that:

P (h1, . . . , hn) = P (h1) ∗ P (h2 | h1) ∗ . . . ∗ P (hn | h1, . . . , hn−1) (2.1)

This expresses the likelihood in terms of a product of conditional proba-
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bilities that may be easier to approximate than the full likelihood itself.

Unfortunately this observation in itself doesn’t allow efficient calculation of

the likelihood as no practical exact methods are known to calculate these

conditionals. However approximate models for generating a new haplotype

given a set of known haplotypes have been developed [21, 22, 25]. In this

chapter I present four schemes which use the approach of calculating a ‘prod-

uct of approximate conditional’ (or PAC) likelihoods. I analyse the strengths

and weaknesses of the overall approach and also the relative merits of the

individual approximations. Informally, all the processes for generating a new

haplotype, hk+1, from k pre-existing haplotypes, h1, . . . , hk, can be described

as follows:

1. As haplotypes share a common ancestor they should be related; this is

done by allowing hk+1 to ‘copy’ previously considered haplotypes.

2. Some pairs of sequences show regions of similarity due to a high de-

gree of relatedness but recombination allows different relationships at

different points along the genome, so hk+1 may copy a different hj at

different loci.

3. Mutation creates SNPs which are novel, so that haplotypes derived

from the same ancestor at a locus may differ.

In this way the schemes create haplotypes which are an imperfect mosaic of
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the haplotypes already in the sample. That is, for k ≥ 1, at each SNP hk+1

is an imperfect copy of hj for some j. To calculate P (h1) they assume that

the first haplotype is equally likely to be any of those in the sample.

The following is a formal description of the Li and Stephens model in-

cluding a method for efficient likelihood calculations under this model. I will

refer to this model as πL&S.

Description of πL&S

Let Xj denote which haplotype hk+1 copies from at site j. To approx-

imate recombination they model the Xj as a Markov chain on {1, . . . , k}

with P (X1 = x) = 1/k (∀x ∈ {1, . . . , k}). Let dj denote the physical dis-

tance between markers j and j + 1. Define the recombination parameter by

ρj = 4Ncj where N is the effective population size, and cj is the average rate

of crossover per unit physical distance, per meiosis, between sites j and j +1.

The transition rate is constructed assuming that recombination events occur

according to a Poisson process of rate ρjdj/k, the division by k here reflects

the shorter copying time when there are more sequences in the sample. The

probability of no recombination events between sites j and j + 1 is therefore

e−ρjdj/k and the probability of at least one recombination is (1 − e−ρjdj/k).

Given a recombination there is probability 1/k of recombining to any one of

the k sequences already in the sample (including that copied at the previous
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site). In

Pr(Xj+1 = x′ | Xj = x)

=





exp(−ρjdj/k) + (1 − exp(−ρjdj/k))(1/k) if x′ = x

(1 − exp(−ρjdj/k))(1/k) otherwise

To capture the mutation process they allow ‘imperfections’ in the copy-

ing scheme, that is, with probability k/(k + θ) the copy is exact and with

probability θ/(k + θ) a ‘mutation’ occurs. These approximate the probabil-

ity that the next event back in time on the new sequence is a coalescence

event (rate k) or mutation (rate θ). Specifically, if hi,j denotes the allele at

site j in haplotype i then, given the copying process X1, . . . , XS the alleles

hk+1,1, hk+1,2, . . . , hk+1,S are independent, with

P (hk+1,j = a | Xj = x, h1, . . . , hk)

=





k/(k + θ̃) + 1
2
× θ̃/(k + θ̃) hx,j = a

1
2
× θ̃/(k + θ̃) hx,j 6= a.

(2.2)

The term here corresponding to when hk+1 copies x at site j and retains the

same type is a sum over two possible terms: the probability that no mutation

events have occurred since the common ancestor of hk+1 and x added to the

probability of a sequence of mutations that leave hk+1 and x with the same
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type. The term θ̃/(k+ θ̃) is an approximation to the probability that the first

event backwards in time on hk+1 is a mutation event, k/(k+ θ̃), approximates

the probability that the first event is a coalescence event. Li and Stephens

use the quantity θ̃ =
(∑n−1

i=1
1
i

)−1
as their mutation parameter.

The above formulation of πL&S provides a description of how to simulate

data under their new model but the problem of inference is more difficult.

The likelihood can be viewed as a sum over all possible histories that could

give rise to the data. The advantage of the Li and Stephens model is that

this now becomes tractable; the forward algorithm (see Chapter 1) can be

used to sum over all possible states.

To do this, let hk+1,≤j denote the types of the first j sites of haplo-

type hk+1. For ease of notation let αj(x) = P (hk+1,≤j, Xj = x) and let

γj+1(x) = P (hk+1,j = a | Xj = x, h1, . . . , hk), (given in (2.2)). Then α1(x)

can be calculated directly for x = 1, . . . , k as 1/k multiplied by the appro-

priate formula from Equation 2.2 at site 1. To compute α2(x) . . . , αL(x) the

forwards algorithm (see Equation 1.12 in Chapter 1) can be used:

αj+1(x) = γj+1(x)
k∑

x′=1

αj(x
′)P (Xj+1 = x | Xj = x′)

= γj+1(x)

(
pjαj(x) + (1 − pj)

1

k

k∑

x′=1

αj(x
′)

)
, (2.3)
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where pj = exp(−ρjdj/k). The value of πL&S(hk+1 | h1, . . . , hk) is then cal-

culated as
∑k

s=1 αL(s). This formula precisely mimics that given in Equation

1.12 in Chapter 1.

The advantage of this scheme is that it can be calculated very fast. The

dynamic programming algorithm takes O(Ln2) time to compute which is

possible even for large data sets.

Li and Stephens note that their scheme captures certain aspects of co-

alescent data, when simulating a new haplotype given a set of previously

simulated haplotypes:

1. The new haplotype is likely to approximate haplotypes with high fre-

quency in the sample.

2. The probability of seeing new haplotypes decreases as the sample size

increases.

3. The probability of seeing a new haplotype increases as the mutation

rate increases.

4. When a haplotype is not an exact copy of a previously simulated hap-

lotype it will typically differ by only a small number of mutations. It

is unlikely to be completely different to all existing haplotypes.

5. The new haplotype may be very similar to one previously sampled
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haplotype in one location while being more closely related to other

haplotypes at other locations due to recombination.

Unfortunately, there are problems with this method, both theoretical and

practical. Due to the approximations made in calculating P (hk+1 | h1, . . . hk)

the ordering in which samples are considered influences the likelihood of the

data strongly. To attempt to compensate for this it is necessary to average

over orderings. However the number of possible orderings is so high as to

make this infeasible even for a small sample, so only a fraction of these can be

used. Li and Stephens use 20 orderings to calculate the likelihood; they claim

that although the likelihood can change significantly for different orderings

the shape of the curve remains roughly constant and relative likelihoods can

be calculated as long as the same set of orderings is used for each value of

the parameters. This, at least, should allow estimated maximum likelihood

estimates of parameters not to vary greatly between runs. Unfortunately,

even the averaged likelihoods produced by this method provide biased esti-

mates of ρ. Furthermore this bias is hard to model and no simple correction

is available. In their paper Li and Stephens decided to measure the bias in

a number of data sets and adjust their estimates based on these measure-

ments. It is therefore unknown how the bias in πL&S may change when the

data does not correspond well to those data sets used to inform their bias
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correction. For example, rate estimation may deteriorate in the presence of

variable recombination rate estimation.

2.3 Alternatives to πL&S

The problems encountered by the scheme of Li and Stephens are a result of

the fact that the conditional likelihoods they use are only an approximation

to the true likelihoods. Were the true conditional likelihoods known then only

one ordering would be required and there would be no bias. With this in mind

I propose three alternative approximations to these likelihoods that attempt

to capture further features of the data. A natural model to consider is the

model on which πL&S is based, that proposed by Fearnhead and Donnelly

to generate approximate likelihoods in their importance sampler [21]. This

scheme includes an explicit concept of the evolutionary time between the

haplotype under examination and the haplotypes it copies at each site. Under

this scheme the rate of mutation depends on the time between the haplotypes.

I also investigate two novel schemes, the first can be viewed as an extension of

the scheme proposed by Fearnhead and Donnelly to allow the time between

sequences to also affect the rate of recombination and the final approach

is to explicitly model the block like nature of inheritance and calculate the

likelihoods for specific blocks analytically.
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2.3.1 Fearnhead and Donnelly, πF&D

Firstly I investigate the scheme proposed by Fearnhead and Donnelly in 2001

[21]. Although this scheme was not intended as a full model for sequence

evolution it is an approximation to the quantity P (hn | h1, . . . , hn−1), denoted

here by πF&D. To understand the differences between πL&S and πF&D it is

necessary to consider the genealogical time separating a pair of sequences,

t. Under the coalescent when t is large the expected density of mutations

is higher and the distances between recombination events are shorter on

average. When t is smaller the reverse holds with sparse allelic differences

and long shared tracts unbroken by recombination.

A natural approach to dealing with the unknown parameter t is to in-

tegrate over all possible t. The Li and Stephens model can be viewed as

an integration over t at each site, independently. Fearnhead and Donnelly

explicitly model t in their conditional likelihood calculations. In regions un-

broken by recombination events t should not change, and this is implemented

in their model. The rate at which mutations arise between sequences is then

dependent on t. In the model of Fearnhead and Donnelly the rate at which

recombination occurs is independent of t.

The evolutionary time between sequences is a continuous quantity and so

implementing t in a Hidden Markov Model is not directly amenable to effi-
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cient likelihood calculation. Instead, using the known distribution of t under

the coalescent Fearnhead and Donnelly propose the numerical approximation

of Gaussian Quadrature (see eg. Kreyszig [26]) to perform their block-wise

integration over t. For a given number, a, Gaussian Quadrature is used to de-

fine specific values of the times between sequences, t1, . . . , ta, and associated

weights, w1, . . . , wa so that for a general function f ,

∫ ∞

0

exp(−t)f(t)dt ≈

a∑

i=1

wmf(ti). (2.4)

The weights are chosen so that
∑a

i=1 wi = 1. Using this approximation it is

then possible to use the same site by site dynamic programming approach

used in the Li and Stephens scheme, πL&S. I use a = 4 in this implemen-

tation to coincide with the values used by Fearnhead and Donnelly. This

corresponds to four times as many possible states in the HMM as in the Li

and Stephens approach: at every site there are four times at which the new

sequence might copy from each of the already sampled sequences.

The scheme proposed by Fearnhead and Donnelly built on the ‘Look

down and Copy’ model designed by Stephens and Donnelly [20] in 2000.

Fearnhead and Donnelly envisage a two stage process by which the new

sequence is derived. Firstly recombination events are placed on the length

of the sequence and, in between these events, a sequence to ‘copy’ from is
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chosen. In each of these blocks containing no recombination the Look down

and Copy model from Stephens and Donnelly is used to determine the allelic

states.

To perform inference a Hidden Markov Model is used and I follow the

approach given by Fearnhead and Donnelly. To calculate the transition rates

Fearnhead and Donnelly consider the next event backwards in time for each

pair of adjacent sites. Either the next event is a recombination or a coa-

lescence event. When a coalescence event occurs then the same sequence is

copied at both sites. Otherwise a new sequence is chosen independently of

the copied sequence at the last site. In this case the weights from Gaussian

quadrature are used to determine the probability of each discrete time point.

More formally, and using the same notation as before, denote the time that

hk+1 copies haplotype Xj from at site j by tj. The transition probabilities

are then given by

Pr(Xj+1 = x′, tj+1 = t′ | Xj = x, tj = t)

=





k
k+ρjdj

+
(

ρjdj

k+ρjdj
× wt

k

)
if x′ = x, t′ = t

ρjdj

k+ρjdj
×

wt′

k
otherwise

In Fearnhead and Donnelly 2001 they use a general multi-allelic mutation

model. The probability of observing each non-recombinant sequence segment
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is defined by a double summation over all sequences in the sample and mu-

tation patterns that give rise to the new sequence from these already known

sequences. So as to perform direct comparisons with the πL&S and due to the

recent interest in SNP data I have used the bi-allelic mutation model used

by Li and Stephens with the same mutation parameter, θ̃ but now scaled by

t to reflect the evolutionary total time between the sequences. Set

P (hk+1,j = a | Xj = x, h1, . . . , hk)

=





k
k+θ̃t

hx,j = a

θ̃t
k+θ̃t

hx,j 6= a

(2.5)

where k is the number of sequences already in the sample. An alternative

formulation would be to set the mutation probability to (1 − exp(−θ/k)) as

though the time t were known exactly. If many time points are used this

seems more appropriate, of course, for only 1 time point (and so perhaps

also for a small number) then the current formulation is more comparable

with Li and Stephens. The forward algorithm (from Chapter 1) can be used

to calculate the likelihood of the complete data in O(n2L) time (remember

that n is the number of individuals in the whole sample).

Let tj denote the time that hk+1 copies from haplotype Xj at site j.

Define αj(x, t) = P (hk+1,≤j | Xj = x, tj = t) and γj+1(x, t) = P (hk+1,j = a |
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Xj = x, tj = t, h1, . . . , hk), (given in (2.5)). Then

αj+1(x, t) =

= γj+1(x, t)
k∑

x′=1

4∑

t′=1

αj(x
′, t′)P (Xj+1 = x, tj+1 = t | Xj = x′, tj = t′)

= γj+1(x, t) ×

(
pjαj(x, t) + (1 − pj)

1

k

k∑

x′=1

4∑

t′=1

wt′αj(x
′, t′)

)
, (2.6)

where pj =
ρjdj

k+ρjdj
. The value of πF&D(hk+1 | h1, . . . , hk) is then given by

k∑

s=1

4∑

t=1

αL(x, t). (2.7)

This scheme is slower than Li and Stephens but the fixed time within

non-recombinant blocks may be more appropriate to population genetic data.

However a simplifying assumption that the recombination process is indepen-

dent of the evolutionary time between sequences is made. The next scheme

attempts to incorporate the effect of evolutionary time into the recombina-

tion process.

2.3.2 A new algorithm, πR

Allowing the rate of recombination to depend on the time between sequences

is a natural extension of the Fearnhead and Donnelly model to try to capture

more features of the evolutionary process. However care must be taken:
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recombination events are more likely when the evolutionary time is large. In

a direct implementation that allowed recombinations to depend on time, this

greater rate of recombination would lead to a bias in the distribution of the

tMRCA at each site (away from large copying times). Under the coalescent

(and in the absence of data) the marginal distribution of the evolutionary

time between two haplotypes should be exponential of rate 1. Using the

same approach as Fearnhead and Donnelly I approximate this distribution

by a number of discrete time states and appropriate weights that are chosen

using Gaussian quadrature. It is then possible to remove the bias against

large copying times by altering the transition rates between different time

states.

More formally, consider a possible states, t(1), . . . , t(a), which represent

the possible times at which copying can occur. Let tj denote the time at site j

and let the event Rj,j+1 denote a recombination between sites j and j +1. To

account for bias I introduce transition rates from time t to time t′ conditional

on recombination: λt,t′ . Now, the model is defined to be symmetric in the

direction that the haplotypes are read. Also the prior distribution of evolu-

tionary time between sequences does not change along the sequence. Hence

the probability of a recombination event given time information at either of

its flanking sites (but not both) is independent of whether it is the left or right

hand site known about. That is: P (Rj,j+1 | tj = t) = P (Rj,j+1 | tj+1 = t).
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Further, the model assumes independence in the copying process across a re-

combination breakpoint so the λt,t′ ’s are independent of t and can be viewed

as the probability of entering time state t′ given a recombination event - ie.

λt,t′ = λt∗,t′ = λt′ ∀t, t∗. This approximation can be overcome in the two

sequence case, however for multiple sequences the situation is more compli-

cated and it seems unlikely to be a major contributing factor to the efficacy

of these schemes. The λt′ can be derived, taking an arbitrary site j:

λt′ = P (tj+1 = t′ | Rj,j+1)

=
P (Rj,j+1 | tj+1 = t′)P (tj+1 = t′)

P (Rj,j+1)

=
P (Rj,j+1 | tj = t′)P (t0 = t′)

P (Rj,j+1)

=
rt′wt′

r̄
(2.8)

where the wt′ are the weights assigned to each time point by Gaussian quadra-

ture (and therefore correspond to the approximation to the coalescent time

distribution, which we hope to achieve at stationarity) and r̄ =
∑k

i=1 wt(i)rt(i).

In the absence of data there should be no net shift along the sequence in the

probability of being in each state so, by symmetry in the direction in which

the sequence is read, the total transition between the different states should
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be equal:

wtrtλt,t′ = wt′rt′λt′,t ∀t, t′. (2.9)

Note that the solution given in equation 2.8 trivially satisfies the above cri-

terion.

It is now possible to give a mathematical formulation of the model using

the same notation as in the previous two cases. We use a transition rate of

a similar form to that of Li and Stephens’ scheme.

Pr(Xj+1 = x′, tj+1 = t′ | Xj = x, tj = t)

=





exp(−ρjdjt/k) + (1 − exp(−ρjdjt/k))(λt′/k) if x′ = x, t = t′

(1 − exp(−ρjdjt/k))(λt′/k) otherwise.

(2.10)

The factor λt′/k is the marginal prior probability of copying from any specific

sequence at time t′.

I use the same mutation model as in my implementation of the Fearnhead

and Donnelly scheme:

P (hk+1,j = a | Xj = x, tj = t, h1, . . . , hk)

=





k
k+θ̃t

hx,j = a

θ̃t
k+θ̃t

hx,j 6= a

(2.11)
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where k is the number of sequences already in the sample.

Again the forward algorithm can be used to calculate the likelihood in

O(n2L) time in precisely the same way as used in the Fearnhead and Donnelly

scheme.

2.3.3 An Explicit Block-wise approach, πL2

The previous models for calculating the likelihood of a haplotype given a set

of previously sampled sequences have allowed the likelihood to be calculated

site by site. This model considers all of the data in regions, bounded by re-

combination events (and unbroken by recombination). Within these regions

the likelihood, given a sequence to copy from, is calculated analytically. Let

the term block denote a stretch of a single haplotype bounded by two recom-

bination events with no internal recombination. This algorithm is indexed

by the gaps between sites. For each gap between sites, i, a partial likelihood,

P (Di | θ, ρ, R(i)), using only the data up to i and conditional on a recombi-

nation at this point, R(i), is calculated. I use P (Di) as a shorthand for this

quantity and P (Di,j) to denote the likelihood conditional on recombinations

at j (at the left) and i (at the right) and when only the sites from j to i are

considered. For ease of description I first consider only two sequences typed

only at L segregating loci. I derive an approximation to the joint proba-
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bility of observing these sequences in a region unbroken by recombination

and bounded on the right by recombination at i. The likelihood is then a

recursive sum over all possible block combinations. For i > j the recursion

can be described as follows:

P (Di | θ, ρ, R(i)) =
i∑

j=1

P (Di,j | θ, ρ, (j → i))P (j → i)P (Dj). (2.12)

where j → i denotes an unbroken block ending at i (by recombination, unless

i = L) given the start of the block is at j. The likelihood of the parameters

given all L sites is then P (DL | θ, ρ). Using (2.12) above it can be seen

that the algorithm takes order L2 time to calculate the likelihood of the next

haplotype.

Consider the quantity

P (Di,j | θ, ρ, (j → i)) × P (j → i).

It is easiest to view this as the joint probability, P (Di,j, (j → i) | θ, ρ), for

this section. Let j, i be the first and last sites of a given block respectively

then, for ease of notation, I drop the explicit conditioning on θ and ρ to

define

P (m, (j → i)) = P (Di,j, (j → i) | θ, ρ) (2.13)
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where m denotes the pattern of mutation in this block. I now derive P (m, (j →

i)) for a block that is bounded on the left by the start of the data and is

bounded on the right by a recombination event. To calculate this quantity

it is first necessary to derive the distribution of block lengths in the absence

of data. I do this by considering two discrete sequences of infinite length in

a Wright-Fisher population of N individuals.

Define the time in a generation to be 1. Only segregating sites are explic-

itly considered, to account for this the distance between the jth and j + 1th

segregating sites is denoted by dj. The (per generation) recombination rate

in this region is denoted by rj and recombination events are assumed to be

independent. The probability of no recombination between the first l segre-

gating sites (hence l − 1 gaps between sites) and at least one recombination

between sites l and (l + 1) in the first τ generations is therefore:

P (l | τ) =
l−1∏

j=1

(1 − rjdj)
2τ × (1 − (1 − rldl)

2τ ). (2.14)

For a diploid population with N individuals the Wright Fisher model
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gives the prior distribution on τ as

P (τ) =
1

2N

(
1 −

1

2N

)τ−1

hence (2.15)

P (l) =
∞∑

τ=1

(
1

2N

(
1 −

1

2N

)τ−1

×
l−1∏

j=1

(1 − rjdj)
2τ × (1 − (1 − rldl)

2τ )

)
.

In order to calculate this quantity under the coalescent a standard limiting

argument is followed in the next few stages. Setting t = τ
2N

gives

∞∑

τ=1

(
1

2N

(
1 −

1

2N

)2Nt−1

×
l−1∏

j=1

(1 − rjdj)
4Nt × (1 − (1 − rldl)

4Nt)

)

and setting ρj = 4Nrj this becomes

∞∑

τ=1

(
1

2N

(
1 −

1

2N

)2Nt−1

×
l−1∏

j=1

(1 − ρjdj/4N)4Nt × (1 − (1 − ρldl/4N)4Nt)

)

Noting that limn→∞(1 + x/n)n = ex and letting N → ∞ in conjunction with

transforming our sum over τ into an integral over t gives

∫ ∞

0

e−t

l−1∏

j=1

e−tρjdj(1 − e−tρldl)dt

=

∫ ∞

0

e−te−t(
∑l−1

j=1 ρjdj)(1 − e−tρldl)dt.

(2.16)
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Let Lleft denote
∑l−1

j=1 ρjdj and Lright denote
∑l

j=1 ρjdj then this integral

becomes:

∫ ∞

0

e−t(1+Lleft) ×
(
1 − e−tρldl

)
dt (2.17)

=

∫ ∞

0

e−t(1+Lleft) − e−t(1+Lright)dt which is

P (l) =
( 1

1 + Lleft

)
−
( 1

1 + Lright

)
. (2.18)

Note that the integrand in (2.17) is P (t)P (l | t), so

P (l | t) = e−tLleft ×
(
1 − e−tρldl

)
. (2.19)

To calculate P (m, (j → i)), as defined in 2.13, for a particular recombination

block note that:

P (m, (j → i)) =

∫ ∞

0

P (t)P ((i, j) | t)P (m | (j → i), t)dt (2.20)

where P ((i, j) | t) denotes the probability of a recombination in between sites

i and i + 1 given that the block started with site j.

Equation (2.20) is used for calculating the partial likelihoods at both

boundaries and for any block in the middle of the data. Appropriate substi-

73



?

Figure 2.1: This figure a genealogical interpretation for the new sequence
in the sample. Under the coalescent model there is an increased rate of
coalescence (hence a shorter distribution to the tMRCA) when there are
more sequences in the sample. The rate of coalescence of the new sequence
to the rest of the tree is proportional to the number of extant sequences in
the tree. This is approximated by the initial number of lineages, k, although
the number of sequences in the rest of the tree changes through time with
coalescence and recombination events on other sequences. I use this simple
form to be consistent with the other schemes.

tutions need to be made for P (t) and P (l | t) in each case. At the right hand

boundary P (l | t) is a sum over all possible places for the right hand bound

on where the recombination could have occurred.

I first consider a block starting at the left hand edge of the data, with

a recombination between sites l and l + 1. I model mutation as a Poisson

process on the block and assume that all mutations lead to bi-allelic sites

and that all are observed. Consider now k already observed haplotypes, I

use ideas from coalescent theory (see Figure 2.1) to adjust the distribution

of evolutionary time to

P (t) ≈ ke−kt.

Mutations at each site are independent and the mutations are assumed
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to occur as a Poisson process in time. This gives the following expression for

the mutation pattern m in a block from j to i:

P (m | (i, j), t) = (tθ)me−tθ(i−j)

where m is the number of mutations in the mutation pattern m. Continuing

the derivation for the specific situation where j = 0 and i = l < L this

becomes:

P (m, (0 → l)) =

∫ ∞

0

P (t)P (l | t)P (m | l, t)dt

=

∫ ∞

0

ke−kte−t(1+Lleft)
(
1 − e−tρldl

)
(tθ)me−tθldt

= kθm

∫ ∞

0

tme−t(k+Lleft+θl)dt −

∫ ∞

0

tme−t(k+Lright+θl)

= kθm

(
1

(k + Lleft + θl)m+1
−

1

(k + Lright + θl)m+1

)
.(2.21)

The above formula deals with blocks that start at the left hand edge of the

data and end with a recombination to the left of the end of the data. There

are four scenarios in total for which this quantity must be calculated.

1. From the left hand edge of the data to a site before the right hand edge

of the data.

2. From the left hand edge of the data to the right hand edge.
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3. From a point to the right of the left edge of the data to the right hand

edge.

4. Between two points in the middle of the data.

Note that in situations 3 and 4 the distribution of time between sequences

is altered by conditioning on a recombination event between the SNP just

before this block begins and the first SNP in the block. Let P l(R | t) be

the probability of recombination conditioning on the time to the left of the

recombination breakpoint being t and P r(R | t) be the probability of recom-

bination given that the time to the right of the recombination is t. Also use

P r(t | R) as the appropriate analogue for the reverse condition. We again

assume that blocks separated by recombination are independent, and so the

distribution of evolutionary time in one block is independent of the features

of the previous. Thus by symmetry in the direction in which the data is

read P l(R | t) = P r(R | t) (following the reasoning in the derivation of πR).

Hence

P r(t | R) =
P r(R | t)P (t)

P (R)

=
P l(R | t)P (t)

P (R)

=

(
1 − e−ρjdjt

)
ke−kt

ρjdj/(k + ρjdj)
(2.22)
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where P (R) is calculated as
∫∞

t′=0
P (R | t′)P (t′)dt′.

It is finally necessary to calculate P (l | t) when the right hand edge of the

block is the right hand extreme of the data. Let Λ denote the position, in

the full unobserved haplotype, where the next recombination event occurs.

Then we can rewrite P (l | t) as P (Λ ≥ l | t, ). Now

P (Λ ≥ l | t, ) =
∑∞

a=0 P (l + a | t)

=
∑∞

a=0 e−t(
∑l+a−1

j=1 ρjdj) − e−t(
∑l+a

j=1 ρjdj)

= e−t(
∑l−1

j=1 ρjdj).

Of course the dj are not specified outside the range of the data, however these

terms do not appear in the final result, so they can be chosen arbitrarily.

To save computational resources recombination events are only allowed

at the midpoints between segregating sites and the mutation rates for each

segregating site are then adjusted to represent to the number of sites in the

interval between both midpoints. This then gives rise to the following final

formulae:

Let Li,j denote
∑i−1

k=j ρkdk and
∏

m θm denote the product of the mu-

tation rates across the intervals at each of the segregating sites in m, this

is analagous to θm in equation 2.21 but accounts for the distance between

SNPs. Finally, for further ease of notation let
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g(i, j,m, k) =
1

(k + Li,j + θ∗)m+1

where θ∗ denotes the total mutation rate across the block. Then

P (block) =





n
∏

m θm (g(0, i,m, k) − g(0, i + 1,m, k)) i < L, j = 0

n
∏

m θm (g(0, L,m, k)) i = L, j = 0

k(k+ρ)
∏

m
θm

ρ
(g(j, i,m, k) − g(j − 1, i,m, k)) i = L, j > 0

k(k+ρ)
∏

m
θm

ρ
(g(j, i,m, k) − g(j − 1, i,m, k)−

g(j, i + 1,m, k) + g(j − 1, i + 1,m, k) ) i < L, j > 0.

(2.23)

Having derived likelihoods for individual blocks it is then possible to use

dynamic programming to calculate the probability of observing a haplotype

hk+1 given a set {h1, . . . , hk} of previously observed haplotypes. Similar

iterative formulae to those used in equations 2.3 and 2.6 can be employed.

Let Xj,i denote the haplotype hk+1 copies from between sites j and i. Also,

let αi = P (hk+1,≤i | Ri) where event Ri states that there is a recombination

event at i. Finally, define γi,j(x) = P (hk+1,(j,i) | Xj,i = x,Ri) . Then
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αi+1 =
i−1∑

j=0

∑

x∈h

γi,j(x) × αj (2.24)

where α0 = 1. Then

P (hk+1 | h1 . . . hk) = αL (2.25)

2.4 Results

Assessing the strengths and weaknesses of these schemes presents several

technical difficulties. Firstly the relative performance of each model will de-

pend on its application - I use ability to estimate a constant ρ as a measure

of the model’s ability to mimic the coalescent. This is because the Li and

Stephens scheme was developed to estimate recombination rates. There are

some disadvantages of using this method of assessment. Firstly it is im-

possible to calculate the true posterior distribution, or even the maximum

likelihood estimate of ρ as large amounts of data are required to be at all

informative. Such data set sizes are impossible to analyse using current full

likelihood methods. Even for the data set sizes used here there is little infor-

mation about ρ and the data may sometimes be consistent even with ρ = ∞.

This means that estimators may have infinite variance and standard meth-

ods for summarising them may produce misleading results. Nevertheless I

try to use straightforward analyses wherever possible - more complicated ap-
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proaches also suffer from a number of difficulties and reduce the transparency

of the study.

To assess the different PAC schemes I used the program makesample by

Hudson [27]. This uses the coalescent with recombination to generate data

sets under neutrality assuming, in this case, constant population size. I ex-

plore various values of the recombination rate, mutation rate and sample size.

For each combination of parameters I generated 100 data sets. Likelihoods

were calculated for a range of values of ρ under each scheme and then approx-

imate maximum likelihood estimates (MLEs) of ρ were derived from these

curves. As an initial summary I present the mean MLEs from each scheme

for the different parameter values, see Table 2.1. For small values of ρ this

table may well give an appropriate first summary of the performance of the

methods. For higher ρ, such as when the data were simulated with ρ = 1000,

there is a risk that the data contains much evidence for recombination and

there is no evidence for correlations between sites. This could cause a true

ML estimate of ρ to be extremely large, perhaps infinite. In practice the

schemes seemed to underestimate ρ when the true value was very large and

only in one case was the maximum tested value (ρ = 108) not outside the 2

log likelihood range for some of the schemes. However, this problem makes

it difficult to draw certain conclusions about the mean estimate of ρ for data

sets simulated with ρ = 1, 000.
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 1.6 0.41 0.45 0.73
1 10 50 2.7 1.2 1.3 1.9
5 10 50 6.4 3.9 4.2 6.0
10 10 50 11 3.2 5.4 12
50 10 50 38 14 23 48
1000 10 50 468 169 309 784
5 10 5 15 12 11 30
5 10 10 5.3 2.5 2.5 6.9
5 10 20 5.5 3.4 3.3 5.9
5 10 30 6.4 3.8 3.7 6.3
5 10 50 6.4 3.9 4.2 6.0
5 10 100 6.4 1.7 2.7 6.1
5 10 200 5.9 1.6 2.4 5.0
5 2 50 4 2 4 4
5 3 50 3 2 3 3
5 5 50 4.8 2.9 3.8 4.3
5 10 50 6.4 3.9 4.3 6.0
5 15 50 7.9 2.0 3.1 7.6
10 15 50 13 4.0 6.5 15

Table 2.1: Mean ML estimates of ρ under the four schemes. For each set of
parameter values 100 data sets were simulated and the schemes were run on
a grid of values for ρ. In each case a single set of 20 orderings were used for
all 4 schemes. The likelihoods were averaged over these 20 orderings. Some
of the simulations gave rise to extremely high variability in estimates of ρ.
For smaller values of θ the estimates must be treated with care. Also note
that the reported values for ρ = 1000 do not include one data set where the
likelihoods were extremely flat and all but the L2 scheme peaked at ρ ≥ 108.
There is a noticeable correlation between the value of theta under which
the data was simulated and the maximum likelihood estimates of ρ for all 4
schemes.
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As well as the mean estimates of ρ it is also interesting to consider the

variance of different estimators. As the estimators have significantly different

means it is perhaps more consistent to use the coefficient of variation to

measure this quantity (see Table 2.2 and Figure 2.2). A complication with

measuring the variation in these estimators is that the data itself is not very

informative for the underlying value of ρ. Although all of the data sets

in a given collection were simulated under the same parameter values, the

true maximum likelihood estimates of those parameters, in particular ρ, are

probably highly variable between data sets (see eg. [28, 21]).

It is important not only to produce point estimates of parameters but also

to give measures of uncertainty and a full picture of the posterior information

about the parameter of interest. As a statistic of the peakedness of the

likelihood curve I give the range of values of ρ for which the log likelihood is

within units of the maximum. I calculated the 2 log likelihood intervals using

a linear interpolation of the likelihood curves for the data (See Table 2.3).

Figure 2.3 gives a a fuller and more visual presentation of the distribution of

estimated likelihoods and the certainty associated for the data sets simulated

with ρ = 5, θ = 10 and n = 50.

Having calculated these approximate intervals and their average width

it is interesting to note how often the mean lies within these intervals, the

coverage. This is summarised in table 2.4.
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 1.14 1.86 1.78 1.68
1 10 50 0.714 0.979 1.06 0.927
5 10 50 0.487 0.630 0.647 0.581
10 10 50 0.324 0.444 0.401 0.373
50 10 50 0.249 0.258 0.251 0.285
1000 10 50 1.43 0.32 0.27 0.26
5 10 5 7 8 9 5
5 10 10 0.9 1.1 1.6 1.2
5 10 20 0.60 0.81 0.89 0.73
5 10 30 0.61 0.71 0.76 0.67
5 10 50 0.487 0.630 0.647 0.581
5 10 100 0.40 0.53 0.47 0.45
5 10 200 0.40 0.57 0.56 0.51
5 2 50 1.70 3.52 2.60 4.60
5 3 50 1.02 1.62 1.37 1.52
5 5 50 0.80 0.92 0.88 0.85
5 10 50 0.487 0.630 0.647 0.581
5 15 50 0.646 0.722 0.696 0.580
10 15 50 0.348 0.431 0.455 0.433

Table 2.2: Coefficient of variation of ML estimates of ρ under the four
schemes. The coefficient of variation helps to adjust estimates of variability
for changes in mean estimates. However this is not a perfect summary of
variation as it can penalise methods which estimate small values of ρ when
the true value of ρ is close to zero. It is necessary to place these estimates in
the context of the corresponding mean MLE estimates.
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Figure 2.2: These histograms show the distribution of maximum likelihood
estimates of ρ under the 4 different schemes. The true values for these sim-
ulations were ρ = 5, θ = 10. There were 50 sequences in each sample. The
results show that there is wide variation in estimates between data sets but
also that there are strong systematic differences between the schemes. πF&D

and πR almost never overestimate ρ whereas the estimates from πL&S and
πL2 seem to be more evenly distributed around the true value.
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 (0.30, 5.63) (0.0118, 3.15) (0.0104, 2.99) (0.0168, 5.37)
1 10 50 (0.789, 7.27) (0.193, 4.83) (0.202, 4.65) (0.292, 7.09)
5 10 50 (2.74, 12.9) (1.33, 9.56) (1.39, 10.5) (2.02, 14.9)
10 10 50 (5.79, 19.2) (1.27, 6.77) (2.33, 11.0) (5.24, 24.2)
50 10 50 (19.2, 57.5) (7.10, 22.3) (11.4, 37.2) (20.8, 76.0)
1000 10 50 (288, 106) (111, 106) (196, 106) (440, 2558)
5 10 5 (9, 126) (0.02, 195) (0.02, 76) (0.3, 221)
5 10 10 (1, 17) (0.3, 24) (0.3, 25) (1, 48)
5 10 20 (1.8, 13) (0.81, 10) (0.76, 10) (1.4, 19)
5 10 30 (2.5, 14) (1.1, 10) (1.1, 11) (1.8, 17)
5 10 50 (2.74, 12.9) (1.33, 9.56) (1.39, 10.5) (2.02, 14.9)
5 10 100 (3.09, 12.0) (0.579, 3.95) (1.08, 5.93) (2.35, 13.1)
5 10 200 (2.89, 10.7) (0.560, 3.53) (0.97, 4.89) (2.01, 10.5)
5 2 50 (0.3, 77) (0.04, 83) (0.1, 92) (0.06, 108)
5 3 50 (0.4, 17) (0.08, 16) (0.2, 22) (0.2, 28)
5 5 50 (1.37, 13.4) (0.518, 10.9) (0.773, 13.4) (0.797, 15.8)
5 10 50 (2.74, 12.9) (1.33, 9.56) (1.39, 10.5) (2.02, 14.9)
5 15 50 (3.89, 14.2) (0.746, 4.47) (1.29, 6.65) (3.12, 16.1)
10 15 50 (7.79, 21.4) (1.93, 7.46) (3.25, 12.1) (7.28, 26.9)

Table 2.3: This Table shows the average upper and lower bounds of intervals
constructed by taking all values within 2 log likelihood units of the maximum
likelihood value. Increasing the size of the data does provide less variable esti-
mates of ρ but even with 200 sequences these schemes showed high variability
in maximum likelihood values. The extremely large confidence intervals for
ρ = 100 amongst the first three schemes were caused by a single data set
where the maximum likelihood was finite but ρ = 108 was still within 2 log
likelihood units of the maximum value. In general the width of these confi-
dence intervals is disappointingly large as even the least variable estimates
suggest that estimation is accurate to within a factor of 5, or worse.
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 62 93 89 91
1 10 50 70 99 92 93
5 10 50 83 89 83 91
10 10 50 93 4 60 95
50 10 50 70 0 7 96
1000 10 50 12 1.1 4.4 89
5 10 5 89 96 65 100
5 10 10 85 87 74 94
5 10 20 84 83 76 91
5 10 30 84 87 85 88
5 10 50 83 89 83 91
5 10 100 86 19 66 92
5 10 200 88 8.7 42 87
5 2 50 92 92 95 98
5 3 50 92 86 93 94
5 5 50 90 81 87 93
5 15 50 77 30 71 86
10 15 50 81 14 70 81

Table 2.4: Coverage of the four schemes, as a percentage, for 2 log likelihood
intervals (given in Table 2.3). Although coverage is quite variable between
the schemes there are a range of reasons for this. The estimates given by
πF&D and πR are strongly biased downwards. While the scheme πL&S is, in
general, less biased the approximate 2 log likelihood intervals constructed in
this way are narrower than those for the scheme πL2 .
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Figure 2.3: Maximum Likelihood Estimates of ρ for 100 data sets (sorted by
MLE) with 2 log likelihood unit error bars. The data was simulated with 50
sequences θ = 10 and the true value of ρ = 5, indicated by the dotted blue
line.
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The Variation in Estimates is Large

Having given a broad overview of the schemes it is worth taking a closer

look at various aspects of these analyses. First of all it is worth noting that

the numbers given here must be treated with care. Variation in estimates

appears to be very high between data sets, even for 200 sequences and θ = 10.

Both the coefficient of variation in estimates is high and the widths of 2 log

likelihood intervals are large. I have made some effort to reflect the accuracy

of estimates by reducing the precision to which some estimates are given

although I have decided to give more information if there is a chance that it

is meaningful and always give at least integer precision unless using scientific

notation. However, when assessment of the various methods is carried out it

is important to take care to appreciate the accuracy of these estimates.

The Schemes always infer some Recombination

One clearly observable feature of all of the schemes examined here is bias.

First of all I examine the tendency of the schemes to estimate ρ > 0 even

when the true value is 0. It is hard, at first, to be certain that there is real

evidence of model misspecification here however. Given lack of information

in the data about ρ we would expect some variation and, as it is not possible

to underestimate ρ when the true value is zero, a positive bias will always be
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observed - even for full likelihood methods. As it is impractical to compare

these results with an accurate full likelihood method other means of assessing

whether these estimates are appropriate to the data are required. It is worth

noting that under πF&D, πR and πL2 just over 1/3 of the MLEs were greater

than 0 while for πL&S more than 2/3 of estimates were greater than 0. Per-

haps more telling is to look at the proportion of the time that L(D | ρ = 0)

was more than 2 units of log likelihood from the MLE. Using table 2.4) it

can be seen that roughly 10% of the confidence intervals from πF&D, πR and

πL2 do not include 0, over 30% of those created using πL&S exclude ρ = 0. It

is, unfortunately, hard to be certain how excessive this proportion is. How-

ever, note that the estimates πF&D and πR have a downwards bias when ρ is

not close to zero. This means that their perhaps impressive performance in

the case of ρ = 0 is less useful as it merely reflects this general tendency to

underestimate ρ. Another subtlety with this analysis is that the 2 log likeli-

hood intervals vary considerably in size. Considering coverage in Table 2.4 it

seems that those confidence intervals using the Li and Stephens scheme are

somewhat too narrow (the values are low, even when taking into account the

fact that some estimates are not centered on the true value). The intervals

from πL2 are possibly too large. Taking this into account it still seems that

πL2 is less prone to estimating recombination rates far from zero.
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Smaller sample sizes produce very poor estimates

It is important to know how the estimates change as various parameters of

the investigation change. The main ancillary aspects that I have explored

have been the sample size and the value of θ under which the data were

simulated. The most noticeable effect of reducing the sample size is to re-

duce the information in the data to such a degree that reliable estimation

becomes impossible. The analysis of data sets with 20 sequences or fewer can

give at best an indication of the underlying parameters, and the variance of

estimators is in practice infinite. A similar problem is found when θ is low.

It is hard to say precisely at what point θ becomes too small for effective

estimation because the number of segregating sites observed for any given θ

is highly variable. One way to gain greater consistency in the information

contained in the data would be to fix the number of segregating sites. How-

ever simulation with a fixed number of segregating sites does not correspond

to a proper evolutionary model and may well lead to bias - especially when

methods that make use of information about the evolutionary time between

sequences are used. Another complicating factor is that the minor allele

frequency at each site has a large effect on whether that site is useful for

recombination rate inference. Many sites are largely uninformative as this

frequency is too small, or even singleton.
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The Bias of the schemes changes with ρ and θ

For those values explored it seems that the value of θ under which the data

was simulated has a positive correlation with the estimates of ρ under all of

these schemes. In Li and Stephens’ paper [22] they reported a negative linear

correlation between the log of the average distance between sites and the bias

in ρ estimation, and a similar result may hold for all of the models. Also

shown in their paper was the tendency for the method to overestimate when

ρ was considerably less than 25 and underestimate when ρ was considerably

more than 25 - when the data comprised of 50 sites. Although bias is clearly

present in all of the algorithms it seems that πL2 is less susceptible to being

‘dragged towards’ a particular value and is more sensitive to the true value

under which the data were simulated.

There are Problems due to the Order Dependency of the Schemes

The PAC approach requires an arbitrary ordering to be assigned to the se-

quences in the sample. In order to circumvent this problem an average over

twenty such orderings has been used to calculate the likelihood curves for

this analysis. For each data set a single set of twenty orderings is used for

each of the schemes and for each value of ρ; in this way it is hoped that

the shape of likelihood curves will be retained and hence the ML estimates

91



will not be overly influenced by the particular (random) choice of orderings.

I now investigate how effective this strategy is at removing the problem of

order dependency from the estimates of ρ. In the following analysis I took

a single data set, the first of those simulated under ρ = 10, θ = 10 and

with 50 sequences. I analyse the variation in the likelihoods estimated at

the true value of ρ and also the variation in the maximum likelihood esti-

mates achieved from different numbers of orderings. The first observation

is that there is extreme variation in the likelihoods achieved from different

orderings. In particular there are a small number of likelihoods which far

exceed the values of the majority. Figure 2.4 shows that with a likelihood

curve generated using 2,000 independent orderings only a small proportion of

these make a significant contribution under any of the schemes. This seems

to be most extreme in the case of πL&S where the 5 biggest likelihoods appear

to account for more than 80% of the height of the curve, so that the vast

majority of the 2,000 orderings make almost no difference at all.

Perhaps a cleaner method of describing the variation in likelihoods is

to examine the log likelihoods. Figure 2.5 shows the distribution of log

likelihoods for the four schemes. At first glance these distributions look

similar to a normal distribution. To check how well this distribution fits I used

q-q plots in Figure 2.6. The fit is not very good for πF&D, πR and πL2 which

show significantly less variation at upper tail than a normal distribution.
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Figure 2.4: The cumulative contribution to the total likelihood sorted in
ascending order when the likelihood is averaged over 2000 independent or-
derings. The same 2,000 orderings were used in all four schemes. Although
all of the schemes suffer from extreme variation in likelihood estimates the
plot for the scheme πL&S seems to indicate that even for 2,000 orderings
variation in likelihood estimates could be particularly significant.
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Figure 2.5: Histograms showing the distribution of the log likelihoods calcu-
lated for ρ = 10 for a single data set with 50 sequences.

This indicates that the variance due to order dependency for these schemes

should be somewhat reduced as the likelihood will be effectively comprised

of a larger number of samples from the space of all orderings. The means

and variances of the log likelihoods shown in Figure 2.5 are given in Table

2.5.
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Figure 2.6: Normal Q-Q plots of the log likelihoods at ρ = 10 for a single
data set each. The grey line is the line y = x. Each point is a log likelihood
generated using one of 2,000 independent orderings of the data. The quan-
tiles of the distribution of log likelihoods is compared to those of a normal
distribution of the same mean and variance.

95



Scheme πL&S πF&D πR πL2

Mean -276 -259 -256 -256
Variance 7.8 4.4 4.3 4.5

Table 2.5: The means and variances of the log likelihoods from Figure 2.5.
There is greater variation in the likelihoods generated by πL&S than under
the other schemes. This means that the likelihood curves under πL&S will be
more greatly influenced by one large likelihood curve than under the other
schemes. This means that the maximum likelihood value will be strongly
influenced by one very likely ordering. Notice that, as shown in Table 2.2,
the scheme does not show greater variation in likelihood estimates.

There is Significant Variation even in the ML estimates of ρ

It may be that estimation of the likelihood itself is not of primary importance.

In this chapter the primary method of assessing these schemes is to estimate

the level of recombination in the data. To asses variation in likelihoods

I give the coefficient of variation in the ML estimates of ρ for a range of

numbers of orderings averaged over to create the likelihood curves (Table

2.6). To give a visual understanding of the effect of this variation Figure 2.7

gives a histogram of the variation in all four schemes over 100 independent

orderings of size 20. There is clearly substantial variation in the estimates

of ρ for all of the schemes. Table 2.6 suggests also that this cannot be easily

removed by increasing the number of orderings. However, increasing the

number of orderings does have a significant effect on the mean ML estimate

of ρ. Table 2.7 shows that for larger numbers of orderings the maximum

likelihood estimate of ρ is likely to fall. This is likely to be because most
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Scheme πL&S πF&D πR πL2

No of Orderings
1 0.26 0.23 0.20 0.20
2 0.25 0.22 0.19 0.18
5 0.24 0.20 0.18 0.17
10 0.23 0.19 0.17 0.17
20 0.22 0.17 0.17 0.16
50 0.22 0.15 0.16 0.15

Table 2.6: Coefficient of Variation of Maximum Likelihood estimates of ρ
using different numbers of orderings. 2000 independent Likelihoods were
calculated for dataset 1, which was simulated using 50 sequences and ρ = θ =
10. 500 subsamples of sizes between 1 and 50 were taken (with replacement)
and likelihood curves generated from an arithmetic average of the individual
values.

orderings infer spurious recombination events and only a very small number

will avoid this (and those will have significantly higher likelihoods). This is

explained in section 2.4.

A Geometric Likelihood Average can significantly reduce MLE

Variation

When the ordering of sequences is viewed as missing data, analogous to a

genealogy in the coalescent setting, it makes sense to take the arithmetic

mean of the likelihoods over orderings. However, it is possible to introduce

attractive properties for estimators using alternative approaches. For exam-

ple the variation in ML estimates of ρ can be substantially reduced by taking

a geometric average of the likelihoods from each ordering. This can be seen

in Figure 2.8. The reason for this is that when the arithmetic average is taken
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Figure 2.7: Variation in Maximum Likelihood estimates given 100 indepen-
dent runs of 20 orderings on Data Set 1. These likelihood estimates were
generated by arithmetically averaging the likelihoods from each ordering.
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the likelihood curve is often overwhelmed by one ordering that resulted in a

significantly higher likelihood than any of the others (see Figure 2.4). This

weights the estimator heavily towards the maximum likelihood value of ρ

for that ordering, and that increases the variance in the estimate. When

geometric averages are taken this hugely flattens the difference in likelihoods

for different orderings and so each ordering contributes a much more signif-

icant proportion of the total. This then leads to a significant reduction in

the variance of the estimators. The coefficient of variation for geometrically

averaged likelihoods can be seen in Table 2.8. It is also worth noting that the

mean maximum likelihood estimators do not change significantly with higher

numbers of orderings when geometric averages are taken (Table 2.9). This

can probably be explained as most orderings produce lower likelihoods and

higher estimates of ρ with some orderings producing significantly higher like-

lihoods and significantly lower estimates of ρ (as explained in section 2.4).

The overall effect of this on arithmetically averaged likelihoods is that for

higher numbers of orderings the maximum likelihood estimate of ρ decreases

but the variance of the estimator decreases slowly. When geometric averag-

ing is used the likelihood makes little difference and those orderings with low

likelihood overwhelm the results from more likely orderings.

The reduced variation produced by taking the geometric mean of the like-

lihoods produced by different orderings of the samples motivates an analysis
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Figure 2.8: Variation in Maximum Likelihood estimates given 100 indepen-
dent runs of 20 geometrically averaged orderings on Data Set 1.

Scheme πL&S πF&D πR πL2

No of Orderings
1 10 4.1 5.5 12
2 9.7 4.0 5.3 12
5 8.9 3.9 5.0 11
10 8.7 3.7 4.9 11
20 7.8 3.5 4.7 11
50 7.3 3.4 4.6 11

Table 2.7: Mean Maximum Likelihood Estimates achieved using different
numbers of orderings to calculate the likelihood surface (with arithmetic
averaging of likelihoods) for data set 1.
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Scheme πL&S πF&D πR πL2

No of Orderings
1 0.26 0.23 0.20 0.20
2 0.19 0.17 0.15 0.14
5 0.12 0.11 0.10 0.096
10 0.087 0.076 0.092 0.070
20 0.064 0.037 0.091 0.046
50 0.043 0.0056 0.089 0.019

Table 2.8: Coefficient of Variation of Maximum Likelihood estimates of ρ
for the first data set simulated under ρ = θ = 10 using different numbers of
(geometrically averaged) orderings.

Scheme πL&S πF&D πR πL2

No of Orderings
1 10 4.1 5.5 12
2 10 4.1 5.5 12
5 10 4.1 5.5 12
10 10 4.1 5.4 12
20 10 4.0 5.4 12
50 10 4.0 5.3 12

Table 2.9: Mean Maximum Likelihood Estimates achieved using different
numbers of orderings to calculate the likelihood surface (with geometric av-
eraging of likelihoods). Values calculated for the first data set simulated
under ρ = θ = 10. Note that there is great variation in the estimates between
data sets and that average estimates can be found in table 2.10
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of the estimators produced in this way. Tables 2.10 - 2.13 show the ba-

sic properties of this estimator in the same format used for those estimates

acquired using an arithmetic average.

Different methods of averaging over orderings provide the possibility to

reduce the variance in estimates of ρ caused by the order dependency of the

PAC likelihood. I have explored the possibility of using a geometric average of

the likelihoods. This is highly effective at removing the variance in maximum

likelihood estimates of ρ due to order dependency. The relative performance

of the two averages is assessed through summaries of these estimates and

there are reasons to be skeptical about taking a geometric average.

There is a notable upwards shift in ML estimates of ρ. This is because

orderings which require more recombinations are often less likely and under

an arithmetic ordering these have little impact on the overall estimate; under

a geometric average this effect is vastly reduced. This shift in estimates

results in a reduction in the coverage of the estimators and this indicates

that these estimates are of lower quality. This effect is most severe when the

data were simulated under small values of ρ and in these cases the estimates,

especially under πL&S are very high. Finally, if the PAC approach is taken

as a model for evolution then the orderings represent missing data. In this

case an arithmetic average approximates the sum over all of the missing data

and is thus easily justified. It is much harder to provide a theoretical basis
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 3.43 0.36 0.49 1.19
1 10 50 4.7 0.90 1.1 2.8
5 10 50 8.6 2.5 3.2 7.8
10 10 50 13 4.3 5.9 14
50 10 50 42 17 25 56
1000 10 50 514 723 414 851
5 10 100 8.2 2.5 3.2 7.2
5 10 200 7.65 2.5 3.0 6.6
5 5 50 6.9 2.0 2.6 6.1
5 15 50 9.7 2.7 3.4 8.3

Table 2.10: Mean ML estimates of ρ when geometric averaging is used. These
values are the means of those estimated over all 100 data sets for each of the
parameter values shown.

for taking a geometric average over the sampled orderings.

The Scheme πL&S is significantly faster than the alternatives

Methods which approximate the likelihood of recombinant population data

have a wide range of potential applications. In some applications the compu-

tational efficiency of the algorithm will be of primary importance. Assessing

the processing time required for these Hidden Markov Model based meth-

ods is straightforward as, for a given number of sequences and number of

segregating sites, the same set of calculations is performed regardless of the

data itself. Some features of the computational burden of each of these al-

gorithms are theoretically straightforward: The Li and Stephens algorithm

(πL&S) is linear in the number of segregating sites but quadratic in the num-
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 0.688 1.56 1.67 1.50
1 10 50 0.547 0.837 0.959 0.827
5 10 50 0.436 0.557 0.598 0.559
10 10 50 0.301 0.360 0.368 0.351
50 10 50 0.232 0.245 0.243 0.266
1000 10 50 1.30 6.88 2.35 0.27
5 10 100 0.31 0.40 0.45 0.39
5 10 200 0.318 0.382 0.397 0.400
5 5 50 0.74 0.93 0.89 0.85
5 15 50 0.286 0.436 0.467 0.423

Table 2.11: Coefficient of variation of ML estimates of ρ using geometric
averaging

Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 (0.82, 8.99) (0.0171, 2.09) (0.0317, 2.54) (0.0709, 6.124)
1 10 50 (1.53, 10.9) (0.136, 3.01) (0.171, 3.79) (0.460, 9.21)
5 10 50 (3.97, 16.6) (0.87, 5.51) (1.12, 7.63) (2.74, 18.0)
10 10 50 (5.18, 20.8) (1.21, 7.43) (1.54, 10.2) (4.02, 23.0)
50 10 50 (22.5, 61.4) (11.0, 26.4) (14.6, 39.2) (33.1, 92.5)
1000 10 50 (316, 106) (150, 106) (201, 106) (477, 2678)
5 10 100 (3.03, 13.1) (0.508, 4.58) (0.334, 6.03) (1.53, 12.8)
5 10 200 (2.78, 12.5) (0.588, 4.39) (0.62, 5.42) (1.33, 11.9)
5 5 50 (2.25, 17.6) (0.39, 6.58) (0.529, 8.78) (1.29, 20.0)
5 15 50 (5.00, 17.1) (0.343, 5.05) (0.221, 6.59) (3.47, 17.4)

Table 2.12: Width of 2 log likelihood intervals when geometric averaging
used
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Scheme πL&S πF&D πR πL2

ρ θ n
0 10 50 27 92 90 86
1 10 50 48 95 94 83
5 10 50 69 60 75 83
10 10 50 90 16 69 93
50 10 50 82 0 11 95
1000 10 50 13 4 4 95
5 10 100 74 48 76 86
5 5 50 90 52 70 93
5 15 50 52 58 79 73

Table 2.13: Coverage of the various estimators, given by percentage.

ber of sequences. The same holds for the scheme of Fearnhead and Donnelly

(πF&D) and our scheme πR. However there are four times as many states

under πF&D and so it takes four times as long. Under πR four calculations

must be made for each of those under πF&D so πR roughly a factor of four

slower again. The explicit block-wise approach πL2 takes time quadratic in

the number of segregating sites, hence its name. I used a Windows XP dual

Pentium 4 (1.8GHz) PC to create the empirical times in Table 2.14. These

give a summary of the time that each of the schemes takes to calculate the

likelihood of a single data set for a selection of data sizes.

The Causes of Order Dependency and aspects of Bias

Unfortunately all of the models suffer from two major problems. Firstly,

the likelihoods depend on an arbitrary ordering assigned to the haplotypes.

Secondly the estimates of ρ obtained are biased. In order to further develop
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Scheme πL&S πF&D πR πL2

n Length
5 5 0.005 0.0095 0.018 0.013
5 20 0.011 0.038 0.084 0.13
5 50 0.016 0.056 0.15 0.83
5 200 0.063 0.23 0.63 18
20 5 0.042 0.22 0.35 0.19
20 20 0.087 0.40 1.0 2.6
20 50 0.19 0.97 2.7 18
20 200 0.79 4.1 11 334
50 5 0.164 0.67 1.6 1.8
50 20 0.50 2.8 6.8 16
50 50 1.3 6.6 18 105
50 200 4.5 26 69 213
200 5 2.5 12 28 19
200 20 7.6 49 119 279
200 50 18 109 284 1771
200 200 65.9 400 1074 34964

Table 2.14: Time taken, in seconds, for each of the schemes to calculate a
single likelihood using 20 orderings.
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these models, it is important to understand how the approximations made

lead to these symptoms.

I start by illustrating where the order dependency in haplotypes orig-

inates, although the likelihoods are comprised of a dynamic sum over all

possible mosaics, much can be gained by considering the minimum number

of events required to produce a specific configuration. Observe that in Figure

2.9 the ordering on the right requires a greater number of mutations or the

same number of mutations and a recombination event. This ordering will

then have a lower likelihood but one which improves as ρ increases, as the

recombination event becomes more likely. Under the coalescent there is no

ordering of sequences and the data set in Figure 2.9 requires only two events

- two mutations. Figure 2.10 gives an example genealogy which achieves this,

the tree gives rise to all three types with only two mutation events. Unfor-

tunately the PAC model contains no information about tree structure and

the parameters of these models cannot capture the subtleties that different

topological situations can create. The lack of genealogical information in the

PAC approach leads to the need to allow for many repeat or back ‘muta-

tions’ at a single site. This leads to the unfortunate situation that the PAC

scheme cannot recognise when, under the infinite sites model, the data are

incompatible with a single tree, as in Figure 2.11 as such configurations can

be explained by repeat mutation. Finally, there exist data sets which are
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compatible with a tree but for which there is no ordering under the PAC

approach which does not require either repeat mutation or recombination.

A simple data set consisting of 3 sequences each with a singleton mutation

has this property, under the PAC approach the data always requires either

four mutations or three mutations and a recombination event. In contrast,

under a genealogical model three mutation events would normally be the

most likely explanation.

Another consequence of the PAC approach being unable to distinguish

between situations such as in Figures 2.11 and 2.9 is that it makes the pa-

rameter θ, which mimics mutation by allowing the copying process to change

types, crucial to the ML estimate of ρ. If θ is set very low then the copying

process will require too many recombinations, as in Figure 2.9. However if

θ is set too high then the PAC model will not infer recombination even in

cases such as in Figure 2.11. This effect explains the strong downwards bias

of the πF&D and πR schemes: examining the likelihoods from these schemes

suggests that they effectively have a higher θ. Evidence for this is that like-

lihoods for data sets with many mutation events are higher under πF&D and

πR than under πL&S and πL2 , however likelihoods for data sets where most

sequences are identical at most of the observed sites are lower under πF&D

and πR. The higher mutation rate leads to the situation that these schemes

give more weight to repeat mutation events and less to recombination events,
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Figure 2.9: These represent two orderings of a simple data set. The colours
represent allelic state. On the left hand side it is possible to obtain the second
haplotype by copying the first sequence and employing a single mutation
event. The third can then be obtained in the same way from the second
haplotype. However, on the right hand side, the same data set in a different
order, the second sequence requires two mutations when copying from the
first but the third sequence is not identical to either of the first two and
so either a recombination event or mutation event is required to produce it.
When the recombination rate is not much smaller than the mutation rate
this can lead to an inflated number of recombination events.

leading to a lower ML estimate of ρ.

Haplotypes are Unordered in the True Ancestral Process

There have been attempts to improve the method by somehow choosing ‘bet-

ter’ orderings for the sequences (various private communications), although

this work has not been published. Although such approaches may seem ap-

pealing at first there are a number of reasons to believe that they cannot

provide us with a solution to the current problems with the PAC approach.

Firstly, consider large data, such that across the region there are likely to

have been many recombination events on each sequence in the past. In this

case, even if a natural ordering could be found in small regions of the data,

the evolutionary relationships between the sequences will change drastically
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Figure 2.10: A simple coalescent history which is consistent with the data
set in Figure 2.9. The blue discs represent mutation events to the blue type.

Figure 2.11: This simple data set depicts an incompatibility between two
sites. A pair of sites is incompatible (with a tree) if, under the infinite sites
assumption, it is impossible to construct a joint evolutionary history for the
sites without at least one recombination event. In this case, if we were to
trace these lineages back to a common ancestor, the next event backwards
could not be be a coalescence event as no pair of sequences is identical. Under
the infinite sites model the next event cannot be a mutation as there are no
singleton alleles. Therefore the next event, backwards in time, in the history
of this sample must be a recombination event.
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Figure 2.12: This data set is compatible with a tree under the infinite sites
model, the data arises as the result of 3 mutations, one on each lineage before
any coalescence events have occurred. Under the PAC model 4 events are
required to explain this data. Two mutation events are needed to derive the
second sequence from the first. Also either 2 further mutations or a mutation
and a recombination are required to derive the third sequence from the first
2. This is independent of the ordering of sequences used.

across the data, so that any such relationship would be likely to break down

over distance. Secondly there exist simple data sets for which all orderings

give precisely the same results but in which recombination may be falsely

inferred, an example is shown in Figure 2.12.

2.4.1 Discussion

The PAC approach has provided an extremely powerful new tool for analysing

population genetic data in the presence of homologous recombination [29, 30,

23, 31, 32]. By approximating the ancestral process and imposing a Markov

structure along the sequence, calculating the likelihood of large data sets has

become computationally tractable. Unfortunately the lack of a genealogical

structure causes certain configurations in the data to be incorrectly inter-

preted. This leads to an order dependency in the likelihoods and the problem
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that estimates of parameters depend on which orderings of the sequences are

used. Furthermore the schemes produce biased estimators and this bias is

complex, depending on a range of factors. The schemes cannot distinguish

incompatibilities from high frequency minor allele frequencies and this leads

to the inability to accurately estimate ρ, especially when there are extreme

amounts of recombination in the sample.

Of the alternative schemes proposed here all of them suffer similar prob-

lems to those of πL&S, also πF&D and πR seem to suffer from a strong down-

wards bias. However, despite this, these models may in fact be more accurate

models of the evolutionary process as the full nature of the bias is not yet

understood. The performance of πL2 appears to be slightly better than that

of the other schemes, it’s performance seems to be most consistent across the

range of values of ρ and it rarely rejects the true value of ρ more often than

expected. Unfortunately this scheme is computationally more expensive, es-

pecially when there are many segregating sites. In a large scale analysis the

data would have to be broken into parts to retain efficiency.

To significantly improve these schemes I believe it will be necessary to aug-

ment this approach with information about topological constraints. Either

direct topological reconstructions or perhaps using incompatibility informa-

tion, such as estimates of the minimum number of recombination events (eg.

Rmin [33], RH [34]). However care must be taken to preserve the computa-
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Figure 2.13: A diagram to explain a genealogical subtlety that affects the
PAC approach - the ‘data’ shown is (the second ordering of) that in Figure
2.4. This diagram shows a genealogy constructed by first creating a coa-
lescent tree for the first two sequences, and then augmenting this tree with
the third sequence, as indicated by the arrow. The coloured discs on the
genealogy indicate the branches and times of mutations to the type indi-
cated by that colour. Given the genealogy it can be seen that although the
third sequences has a different type to all previously sampled sequences no
recombination or further mutation need be employed to explain its existence.
There exist many algorithms that can propose approximate local genealogies
given sequence data (eg. Neighbour joining techniques, or the method of
Mailund (unpublished)). Perhaps it is possible to create a copying scheme
whereby this information is used and repeat mutations/recombinations could
be more definitively identified. The key to improving inference is in utilising
the extra information given by the genealogies while maintaining the Markov
structure and computational efficiency of the schemes proposed here.
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tional efficiency that makes the PAC approach so attractive.
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Chapter 3

A New Model for the Ancestry

of a Sample

3.1 Introduction

The coalescent, developed by Kingman [1], models the ancestry of a sample

of chromosomes from a large randomly mating population of fixed size. In

1983 Hudson [2] extended the model to include recombination and described

an Ancestral Recombination Graph, or ARG, which represents the full ge-

nealogy of a sample of recombinant chromosomes. These models give rise

to straightforward algorithms for generating genealogies backwards in time

and hence also for simulating population genetic data. Wiuf and Hein [35]

developed an alternative method for simulating coalescent genealogies which
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recursively simulates successive coalescent genealogies, separated by single

recombination events, moving left to right along a sequence.

While there are straightforward methods for simulating from the coa-

lescent, inference under the coalescent is extremely challenging due to the

complexity of the space of ARGs [19, 24]. Of crucial importance is the abil-

ity to calculate the likelihood of the data, unfortunately there are no known

analytic expressions for calculating the likelihood even under the simplest

mutation models. Full likelihood Monte Carlo methods under the coales-

cent, such as those developed by Fearnhead and Donnelly [21] and Kuhner

et. al. [19] could potentially be used for inference under the coalescent with

recombination, however, these methods are so computationally expensive as

to be intractable for even moderate data sets. While inference under the

PAC model (see Chapter 2)) is very fast, much of the biological realism of

the coalescent process is lost. When used for recombination rate estimation,

the model gives rise to systematic bias. In addition chromosomes are consid-

ered in a specific order, or set of orderings, and the likelihood is sensitive to

this ordering. The PAC approach is not a genealogical method and so is also

inappropriate for inference on the genealogies relating sample chromosomes.

In this chapter I investigate a new approximation to the coalescent: the

Sequentially Markov Coalescent, or SMC. This model is designed to closely

mimic the coalescent ancestral process. Under the SMC there are fewer
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possible full ARG’s but there is no change to the state space of marginal

genealogies; the purpose of this is to provide a more efficient augmentation

of the data that can be used to calculate the likelihood.

3.1.1 Understanding the Difficulties of Inference under

the Coalescent

In developing approximations to the coalescent under which inference may

be more tractable it is useful to appreciate the reasons why calculation of

the likelihood under the coalescent is so difficult. Firstly, there is no known

expression for the likelihood without knowledge of the underlying genealogy.

It is therefore necessary to first augment the data with an underlying ARG

and it is then possible to calculate the likelihood of the data conditional

on that ARG. The unconditional likelihood can then be approximated as

an average over a large sum of such conditional likelihoods. However, a

direct implementation of this approach is not feasible using current computers

because the number of samples required for such an estimate to be accurate

is extremely large. This is partially because the state space of ARGs is huge

and so a thorough exploration requires many simulations. There is no upper

bound on the number of recombination events in the history of a sample and

this leads to an infinite number of possible topologies. Also the contribution
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Figure 3.1: This diagram shows an example data set and, on the left a
parsimonious coalescent genealogy that explains the data. However, under
the coalescent with recombination there are alternative possible genealogies,
even under the infinite sites model; one possible alternative is shown on
the right. In this case the first event backwards in time is a recombination
event which splits sequence 2 into two halves somewhere to the left of site 3.
Infinitely many alternative ARGs are possible.

to the likelihood varies enormously between simulated genealogies.

Mutation events provide information about the underlying genealogies.

Recombination events reduce our ability to identify the underlying genealogy

by breaking up the sequence into small regions each with different genealogies.

Unless the rate of mutation far exceeds the rate of recombination it is usually

impossible to gain any certainty about the underlying genealogy from the
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data. Even in the case of an infinite mutation rate it is impossible to detect all

of the ancestral recombination events, and hence elucidate the full topology

of the ARG (see Figure 3.1).

This problem can be viewed as the result of a highly redundant augmenta-

tion of the data. In calculating the likelihood of the data, given genealogical

information, only the underlying marginal genealogies need to be specified.

However, there is an infinite number of ARG topologies that correspond to

any set of marginal genealogies and these ARGs usually have very different

densities under the prior. This means that a thorough likelihood calcula-

tion must simulate many ARGs to approximate the likelihood of a single

set of marginal genealogies. Unfortunately, performing direct inference on

marginal genealogies is currently restricted as it is not yet possible to calcu-

late the density of a set of marginal genealogies under the coalescent.

3.2 The Sequentially Markov Coalescent

I propose a new model of the ancestral process, the Sequentially Markov

Coalescent (SMC), which closely approximates the coalescent but causes a

reduction in the state space. In particular, the SMC reduces the number

of redundant recombination events in each ARG. The model follows exactly

the scheme described in section 1.6.1 in Chapter 1with a simple modification.
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Using the same notation let Xi(= ∪xi) be the set of all points at which Ci

has ancestral material, then the SMC is then defined by setting

Ii,j =





1 = if Xi ∩ Xj 6= 0

0 = otherwise.

That is, only pairs of lineages which both have ancestral material at at least

one site can coalesce in this process. The rate of coalescence is the same for

all such pairs regardless of the quantity of overlapping material.

The state space of ARG’s under the SMC is significantly reduced: there

are fewer possible coalescence events and the phenomenon of ‘trapped non-

ancestral material’ does not exist in this setting because the union of two

overlapping intervals (of ancestral material) is always itself an unbroken in-

terval (see Figure 3.2). Trapped non-ancestral material increases the instan-

taneous rate of recombination in the ARG and so under the SMC the number

of recombination events is also reduced ([36] contains the results of a sim-

ulation study to gauge this reduction in recombination events, see Figure

3.3). Note that recombination events in regions when part of a sequence

has reached its MRCA, but is flanked by regions which have not, are still

simulated. Despite the reduction in the state space of ARGs the state space

of marginal genealogies remains the same.
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Figure 3.2: The coalescent phenomenon of trapped non ancestral material.
Recombinations must be simulated within such material as such recombina-
tions affect the genealogies of ancestral material. On the left two chromo-
somes coalesce to create trapped material. All coalescence events in the SMC
are of the form on the right, where the intervals must overlap, hence trapped
non-ancestral material does not occur under the SMC.
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Figure 3.3: This graph shows the ratio of the expected number recombination
events in the ARG under the coalescent to the expected number under the
SMC for n = 2. The results were generated from 106 coalescent simulations
under both models.
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3.3 Simulating Recombinant Genealogies while

moving along a Sequence

While the process described for simulating coalescent genealogies backwards

in time has a simple Markovian structure, the spatial algorithm of Wiuf and

Hein [35] has a complex, non Markovian, structure; the distribution of the

next genealogy in the sequence depends on all previous genealogies. However,

simulating genealogies under the SMC while moving along a sequence has a

simpler, Markov, structure. In particular the following algorithm can be

used to simulate genealogies for n individuals while moving along a sequence

under the SMC.

Envisage a continuous sequence of unit length. Initiate the process by

generating a tree from the coalescent at position 0. (This is equivalent to

generating a genealogy according to the process in section 1.6.1 where ρ = 0).

Denote the total branch length in tree i by Ti.

To generate the i + 1th genealogy from the ith:

• Simulate dj ∼ exp(ρTi/2), the distance to the next recombination

event.

• If
∑i

j=0 dj ≥ 1 then stop. Otherwise draw a point on the existing

tree uniformly along the total branch length. Erase the portion of this

122



R

Figure 3.4: Simulating genealogies under the SMC while moving along a
sequence. A recombination occurs on the first tree and the portion of the
branch above the recombination is erased. This branch then coalesces onto
the remaining branches.

branch that is further back in time and denote the remaining branch

section by the term ‘floating lineage’.

• The floating lineage is then traced backwards in time until it coalesces

with one of the remaining branches in the tree. The rate of coalescence

at a given time is equal to the number of branches remaining at that

time. This time may be further back in time than the MRCA of any

previous tree. Having generated the i+1th tree it is no longer necessary

to keep track of the ith tree under this process. Note that under the

full coalescent process it is necessary to allow coalescence with a lineage

from any of the previous genealogies, not just the most recent.

I now show that the distribution of marginal genealogies is the same

under both the backwards in time process and the sequential algorithm. To
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do this I first describe a slightly altered version of the backwards in time

algorithm, the SMC∗, in which recombination events are not simulated in

‘trapped’ material that has reached its MRCA. By this I mean material that

has reached its common ancestor, but is flanked by material which has not.

I claim that the distribution of marginal genealogies is the same under the

SMC and under SMC∗. The basic reasoning is as follows:

1. Suppose material that has reached its MRCA is present in the ARG,

consider a single sequence, S, which contains such material. Denote the

left edge of this material by T1 and the right by T2. On all sequences

other than S there is only ancestral material at positions less than T1 or

at positions greater than T2. This is true whether or not such material

has also reached its MRCA.

2. This separation of ancestral material partitions the remaining sequences

into disjoint sets α, β and S itself. No sequence in α can coalesce with

a sequence in β.

3. The evolution of material at positions less than T1 is now independent of

material at positions greater than T2. That is, these sequences cannot

coalesce below their MRCA and events in one group do not affect the

rate of events in the other.

4. This leads to independent marginal genealogies in these two regions
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and recombinations in the trapped material between these two regions

do not affect these genealogies.

Proof: Point 1 follows directly from the definition of the SMC, (see Figure

3.5). The SMC only allows coalescence events between lineages that share

ancestral material, and by 1 it is possible to construct α and β in point 2.

As these lineages cannot coalesce the rate of coalescence in one group is un-

affected by coalescence in the other. Similarly for all recombinant sequences

that are created by further recombination. It is possible for sequences to

coalesce with sequence S, but this also does not affect coalescence (or recom-

bination) rates within the subsets, so follows point 3. Point 4 follows directly

as recombination events in the trapped material do not alter the rates of

coalescence, and coalescence is the only process that affects the marginal

genealogies.

I now prove that the simulation of genealogies along a sequence is equiv-

alent to SMC∗.

Proof: To prove the result I consider a single abstract ARG and show that

the density function of this ARG is the same under both models. To begin

the proof I make some straightforward observations:

1. For a given ARG, the tree generated by the sequential process at a

particular locus is exactly the genealogy at that locus.
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1 2

T2T1

Figure 3.5: This diagram shows an example of material reaching its MRCA.
The grey rectangles denote sites which have now reached their MRCA. Note
that, as the MRCA is reached here, no other lineages in the sample can have
ancestral material at these points. Also under the SMC it is impossible to
create trapped non ancestral material, so there are also no lineages which
have ancestral material both to the left of T1 and to the right of T2. Hence
all lineages other than S contain ancestral material only on sites to the left
of T1 or to the right of T2. Lineage S itself is ancestral between T1 and T2

and so there is no trapped non ancestral material in the ARG.

2. Under the backwards in time process the density of the ARG is the

product of the densities in each epoch.

3. The densities calculated in the sequential algorithm can be calculated

as the product of densities for each tree.

4. The densities in each tree in the sequential algorithm can be further

split into a product of densities for each epoch.

By 3 it is then possible to collect all terms for a given epoch in the

sequential algorithm for comparison with the backwards in time process. To

prove the result it is sufficient to show that the densities in each epoch are

the same by 2 and 4.
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To prove this result it is first worth noting some basic figures. Given a

coalescence event the probability that it is between any two specific branches

is 1
p
, where p is the number of pairs that could coalesce in that epoch. Also,

given that an event is a recombination, the probability that it occurs at a

particular position, x say, on a particular sequence is 1/L, where L is the

total amount of recombinant material in this epoch.

Also, the density function of an ARG (as it is a product of terms) can be

separated into two parts, the exponential terms and their coefficients. How-

ever, as shown above the coefficients are trivial as, for every coalescence event

the rate parameter λC = p cancels with the probability of choosing that par-

ticular pair of sequences. Also, the probability of choosing a recombination

at any one position cancels with the rate parameter λR = ρL to give a factor

of ρ. This means that the overall coefficient for a particular ARG is ρr where

r is the total number of recombinations in the ARG. This is also true in the

sequential algorithm (shown later).

Backwards in time Algorithm:

Consider an ARG with n leaves. Consider any epoch within this ARG and

denote the height from the beginning to the end of this epoch (not the time

in the tree in this epoch) by ti.

Denote the rates of coalescence and recombination in this epoch by λi
C
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Trapped material 
created here

Epoch i

Epoch j

Epoch j

Epoch i

x2 x3x1

Figure 3.6: Simulating backwards in time (top) and sequentially (below).
The strikes through branches represent where recombinations occurred on
a tree. The dashed lines indicate the new lineages in each tree. Note
that the stem above the marginal MRCA in the middle tree corresponds
to material that has reached its MRCA. Recombinations are not simulated
in this region under either process. Denote the ‘width’ of the ith tree by
xi. In epoch i the total amount of recombinant material is, lineage by lin-
eage: [x1 + (x1 + x2 + x3) + (x1 + x2) + x3] in the backwards in time pro-
cess. In the spatial process (below) count the branches on each tree giving:
[3x1 +2x2 +2x3]. In epoch j the stem on the middle tree does not contribute
to the branch length (this corresponds to not simulating recombinations in
the trapped non ancestral material in the ARG above) hence both simula-
tions give a rate of [2x1 + 2x3].
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and λi
R respectively then the backwards in time algorithm has density

λi
E

λC + λR

.(λC + λR)e−ti(λC+λR) = λi
Ee−ti(λC+λR) (3.1)

where E is the event at the end of the epoch (at time
∑i

j=0 tj).

More explicitly: assuming p pairs of sequences are able to coalesce in this

epoch and the total amount of recombinant material is L. The contribution

from this event (of a coalescence between two particular sequences, or a

recombination at a specific locus on a particular sequence) to the total density

is then:

e−ti(p+ρL) if E is a coalescence (3.2)

ρe−ti(p+ρL) if E is a recombination (3.3)

Sequential Algorithm:

In the sequential case we break up the terms for each epoch into coalescence

and recombination terms. By definition the sequences able to coalesce in

the backwards in time process are exactly those sequences which share at

least one site at which both sequences have ancestral material. Consider

two lineages from the ARG, in the sequential process these two lineages

will be visible on a single marginal tree, and hence contribute towards the
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overall rate of coalescence, if and only if they share a site on which both have

ancestral material. Given that two lineages are visible on at least one tree in

the sequential process there is some minimal k such that Tk is the first tree

on which both are visible. If k = 1 then the in the construction of T1 these

lineages will contribute a factor of e−ti to the density in this epoch. If k ≥ 2

then in Tk one of the lineages will have recombined in an earlier tree and will

now coalesce back onto tree Tk. In this case also they will contribute a factor

of exactly e−ti . This term appears only once as only lineages that have just

recombined contribute towards the coalescence rate in a new tree. So, if the

rate of coalescence, in a particular epoch, in the backwards in time process

was p then in the spatial process exactly p pairs will have the opportunity to

coalesce in the spatial process. Giving an overall rate of

1.e−ti(p). (3.4)

The recombination terms are calculated in a fundamentally different way

under the sequential algorithm to the backwards in time algorithm. The

distribution of the distance to the next recombination event is exponential

of rate ρbj, where bj is the total branch length in tree Tj. Therefore the

contribution to the density for each tree, Tj, given a recombination distance
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xj along the sequence from the last recombination point is:

ρbje
−ρbjxj .

Given that a recombination has occurred, the density of it occurring at

any specific point in the ARG is 1/bj. So, the density of a recombination

occurring at distance xj from the last recombination point and at a particular

point in the tree is:

ρe−ρbjxj .

As I asserted earlier this gives a coefficient of ρ for every recombination. I now

suppress this coefficient and consider only the exponential terms. Considering

the epoch in question, and a particular tree, Tj, this becomes:

e−ρ(tiβ
i
j)xj

where βi
j is the number of extant lineages in tree Tj and in epoch i, see Figure

3.6.

Taking the product of these for all trees Tj gives

e−ρti(
∑

j βi
jxj). (3.5)
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The contribution in the last tree is the probability of no recombination in a

tree, P (xj > the remaining length in the sequence); this is e−ρ(tiβ
i
j)xj . Note

that the root branches are not included in the βi
j. Informally it may be

helpful to imagine that each of the branches in the marginal trees has a

‘thickness’ equal to the stretch of sequence along to which this marginal tree

applies. Using Figure 3.6 as a guide it can be seen that the total amount

of material on a branch in the backwards in time process is then the sum of

thickness of all of the branches in the sequential process that represent this

branch. More formally, by point 1 at the start of the proof, the total amount

of recombinant material per branch in (3.5) is equal to the total amount of

recombinant material extant on the same branch, in this epoch, in the ARG

generated by the backwards in time process.

Hence the total amount of recombinant material, being the sum of the

amount on each branch, is the total amount of material in this epoch on the

ARG. Hence the exponential terms from considering recombination in this

epoch are

e−ti(ρL). (3.6)

Taking the product of the coalescence terms and the recombination terms we

get:
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e−ti(p+ρL) if E is a coalescence

ρe−ti(p+ρL) if E is a recombination

exactly as in the backwards in time scheme. 2 .

An analogous result holds for the corresponding Markovd process where,

instead of marginal trees, ARGs representing the genealogy at the locus and

the d sites preceding it are constructed recursively. The lineages created

by recombination can then coalesce onto the ARG for this locus instead

of the marginal tree as above. This is equivalent to a backwards in time

process where lineages can only coalesce according to the following rule: L

can coalesce with L′ if and only if there exist loci i, j where L has ancestral

material at i and L′ has ancestral material at j with | i − j |≤ d.

The proof of this result is almost the same as the above. To see that

the coalescence terms match consider any epoch and any pair of lineages

which do not have material within d sites of each other. Then no two trees

in the spatial algorithm will contain both of these lineages in this epoch so

there can be no contribution to the coalescence rate associated with this pair.

However any other pair of sequences will have a point at which both of them

are contained in a marginal tree that the spatial algorithm considers. As in
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the first result this then gives a rate contribution of exactly 1.

The recombination terms can be collected in the same way, however note

that there is now also the possibility of trapped non ancestral material arising

from coalescence events that do not cause any locus to reach its marginal

MRCA. Continuous regions of this type of trapped material are restricted

to stretches no longer than d sites. The contribution to the recombination

rate in the backwards in time process by this trapped material corresponds

to the extra time in the tree provided by the spatial algorithm keeping track

of lineages up to d sites to the left of the current locus.

3.4 Comparison of the SMC and the Coales-

cent

In the previous section I defined a new model for the ancestral process under

which coalescence events are restricted. In order to assess the value of the

SMC it is necessary to compare the properties of it with those of the coa-

lescent. It is useful to consider both the properties of genealogies generated

under the SMC and the patterns of variation that these genealogies give rise

to.

Due to the Markov nature of the coalescent processes backwards in time
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under both the SMC and the full coalescent, the marginal distribution of

genealogies for individual loci is unaffected by recombination events and is

precisely that of the simple coalescent (in the absence of recombination).

Therefore the only differences between the coalescent and the SMC lie in the

correlations between genealogies along the sequence and the consequences of

these correlations on data. To investigate the changes in these correlations

brought about by the approximation proposed here I investigate 3 quanti-

ties. First I consider the covariance in the tMRCA across a range of genetic

distances (measured in term of ρ). This partially addresses a natural concern

that, as the SMC is Markovian along sequences, when simulating genealogies

sequentially one would expect reduced correlation between marginal genealo-

gies separated by more than one recombination event. Secondly I investigate

the frequency of non Markovian patterns in the tMRCA along the sequence,

this attempts to provide a measure of how often the genealogy partially re-

verts to previous configurations under the coalescent. Finally I investigate

correlations between sites for data simulated under both the coalescent and

the SMC.

Covariance in the tMRCA: Although it is not yet known how to calcu-

late the joint distribution of the set of tMRCA’s under the SMC analytically,

accurate results can be obtained by simulation, as in Table 3.4. These results

indicate a reasonable relationship between the SMC and the Coalescent co-
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variances and the SMC values seem to lie within a factor of 3 of those from

the coalescent.

ρ Coalescent tMRCA SMC tMRCA
0.1 1.066 1.025
1 0.599 0.458
2 0.377 0.239
5 0.152 0.068
10 0.059 0.023
20 0.022 0.007
50 0.0044 0.0027
100 0.0024 0.0013

Table 3.1: The covariance of the tMRCA at two sites on a chromosome under
the Coalescent and the SMC with n = 5. The results here are an average over
106 coalescent and SMC simulations for each value of ρ. For intermediate and
high recombination rates there is a significant reduction in the covariance in
the tMRCA. This is because regions separated by significant recombination
activity are less likely to coalesce under the SMC - reducing the correlations
in coalescence time.

Non-Markovian Behaviour in the Coalescent: The second approach

taken here is to try to quantify the scale of non-Markovian behaviour in the

coalescent [36]. I start by defining a genealogy as non Markovian when the

tMRCA of the sample at the loci 0 and 1 are equal but there is some locus,

0 ≤ x ≤ 1, such that the tMRCA at x is different. Define Q∗(n, ρ) as the

proportion of non Markovian genealogies conditional on the tMRCA at sites

0 and 1 being equal, for a given sample size, n and recombination rate, ρ.

Note that, as time is continuous, it is only possible for two loci to share

the same tMRCA when the most recent common ancestor is reached in the
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same coalescence event at both loci. A non-Markovian event is therefore

impossible unless there is a coalescence event between lineages which have

no overlapping ancestral material. Hence under the SMC Q∗(n, ρ) is always

0.

ρ Q∗(2, ρ) Q∗(3, ρ) Q∗(5, ρ) Q∗(10, ρ)
0.1 0.0003 0.0006 0.0008 0.0009
1 0.023 0.041 0.057 0.0684
2 0.054 0.111 0.169 0.204
5 0.106 0.295 0.504 0.606
10 0.123 0.447 0.810 0.910
20 0.112 0.554 0.962 0.996
50 0.065 0.609 0.995 1.000

Table 3.2: The proportion of non-Markovian events conditional on the end-
points of the sequence having the same tMRCA. 107 coalescent runs were
used for each value of ρ. The large difference between n = 2 and larger
numbers of sequences is probably due to the fact that the majority of simu-
lations which had shared coalescence times at the beginning and end of the
sequences when ρ = 50 were simply very short genealogies and no recombina-
tion had occurred. This is much less likely for greater numbers of sequences.
Note that the proportion of simulations in which the tMRCA was the same
at both extremes of the sequences is very small (see Table 3.3) for high ρ
hence such genealogies are rare as a proportion of all simulations.

The quantity Q∗(n, ρ) cannot be calculated analytically under the coa-

lescent so Monte Carlo simulations were used to generate Table 3.2. Note

that care should be taken when comparing the effects for different numbers

of sequences. Firstly, there may be non Markovian events in simulations in-

volving more than 2 sequences but that do not affect the tMRCA. Secondly,

for a given ρ per sequence, the total rate of recombination increases with
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ρ P (2, ρ) P (3, ρ) P (5, ρ) P (10, ρ)
0.1 0.0003 0.922 0.913 0.908
1 0.023 0.508 0.462 0.444
2 0.054 0.309 0.261 0.243
5 0.106 0.114 0.0803 0.0724
10 0.123 0.0403 0.0245 0.0222
20 0.112 0.0119 0.0066 0.0062
50 0.065 0.0020 0.0011 0.0011

Table 3.3: The quantity P (n, ρ) represents the probability of the same tM-
RCA at the left and right edges of the sequence given recombination rate
ρ and with n sequences. To generate this table 107 Coalescent simulations
were used for each value of ρ.

greater sample sizes as there is a greater quantity of ancestral material in the

sample.

The results in Table 3.2 imply that non Markovian behaviour is a signifi-

cant phenomena in coalescent genealogies. The effects seem to increase with

the number of sequences and Q∗ increases with ρ for more than 2 sequences.

However, Q∗ conditions on the end points of the sequences sharing a tM-

RCA, and the probability of this decreases with ρ. The highest proportion

of non Markovian effects was observed for n = 10 and ρ = 2 when 5% of

all simulations showed non this Markovian behaviour. It is likely that with

more sequences this number could increase.

Correlation Patterns in Simulated Data: The above results attempt

the gauge the effect of using the SMC model on simulated genealogies. It is

also important to consider the effect on patterns of variation that generating
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ρ Coal mean r2 Coal var r2 SMC mean r2 SMC var r2

0.1 0.206 0.1201 0.204 0.1187
1 0.150 0.0759 0.145 0.0721
2 0.119 0.0531 0.114 0.0501
5 0.081 0.0281 0.079 0.0268
10 0.059 0.0165 0.058 0.0161
20 0.044 0.0101 0.043 0.0099
50 0.032 0.0058 0.031 0.0057
100 0.027 0.0043 0.026 0.0043

Table 3.4: The mean and variance of the r2 statistic under the coalescent
and the SMC. The results here are an average over 106 coalescent and SMC
simulations tracing the ancestry of 50 chromosomes for each value of ρ

ρ Coal mean D′ Coal var D′ SMC mean D′ SMC var D′

0.1 0.410 0.2187 0.409 0.2183
1 0.375 0.2045 0.372 0.2037
2 0.353 0.1949 0.350 0.1944
5 0.321 0.1800 0.319 0.1797
10 0.296 0.1678 0.296 0.1682
20 0.274 0.1565 0.273 0.1565
50 0.249 0.1432 0.248 0.1428
100 0.235 0.1355 0.236 0.1360

Table 3.5: The mean and variance of the D′ statistic under the coalescent
and the SMC. The results here are an average over 106 coalescent and SMC
simulations tracing the ancestry of 50 chromosomes for each value of ρ

genealogies under the SMC has. Note that the prior distribution of marginal

genealogies at any given locus is identical under the coalescent to under

the SMC. The distribution, in both cases, is exactly that the distribution

under coalescent process for a chromosome with recombination rate 0. It is

therefore only necessary to consider the correlation structure between sites

when assessing the effect of the approximation on data. The co-inheritance

139



of alleles in a population is referred to as linkage disequilibrium and measures

of linkage disequilibrium, such as r2 or D′ [37], are designed to quantify the

pairwise correlation structure of observed alleles. These distribution of these

quantities cannot be derived analytically under the coalescent but simulation

results can be found in Tables 3.4 and 3.5.

The distributions of both r2 and D′ under coalescent and under the SMC

are very similar which encourages the belief that inferences made under the

SMC may reflect well the conclusions that would be drawn under the full

coalescent.

3.4.1 Discussion

The coalescent with recombination is a realistic model for the ancestry of

a random sample of chromosomes in a freely mating neutral population.

However, it is intractable to calculate the full likelihood for modern data sets

with current computing technology under the coalescent. I have proposed an

alternative model which reduces the ancestral state space and gives rise to a

simple Markovian structure when simulating genealogies along a sequence.

For a model to be useful for inference it is necessary that the model

provides a good approximation to the biological processes being explored. In

order to assess the validity of the SMC I have investigated the relationship of
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the SMC to the coalescent, both in terms of the distribution of genealogies

and the resulting patterns of variation produced.

These results suggest that the SMC provides a good approximation to

the coalescent and hence, if inference under the SMC proves to be more

tractable, it could provide a sound alternative to the coalescent for under-

standing population genetic data. In the next chapter I discuss the possible

gains in efficiency that could be made when performing inference under the

SMC.
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Chapter 4

Using the SMC for Importance

Sampling

4.1 Introduction

In the previous Chapter I defined a new model for the genealogy of a sample

of genetic data, the Sequentially Markov Coalescent (SMC). In this Chapter I

investigate the potential for the SMC as a tool for inference, in particular the

relative efficiency of importance sampling under the SMC and the coalescent.

I calculate the likelihoods of one hundred data sets under both the coalescent

and the SMC given a range of values of ρ. To assess the value of the SMC in

this context I examine how closely the SMC likelihoods approximate those

of the coalescent and if there is any reduction in the computational burden
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of calculating these likelihoods.

4.2 Importance Sampling

In this Chapter I introduce a genealogical importance sampler and use it

to perform inference on a collection of simulated data sets. The optimal

importance sampler generates samples according to the target distribution -

that is proposes genealogies according to their distribution conditional on the

data. In 2000, Stephens and Donnelly [20] proposed an importance sampler

which approximated this conditional distribution in the case of no recombi-

nation. In 2001 this method was extended by Fearnhead and Donnelly [21]

to include recombination. I follow the method of Fearnhead and Donnelly in

constructing an importance sampler to calculate the likelihood curves under

both the SMC and the Coalescent. The method generates a coalescent ge-

nealogy backwards in time until the most recent common ancestor is reached

at all sites. The genealogy is constructed using the sample and is augmented

with mutations so that the probability of the sample configuration given the

augmented genealogy is 1 or 0.

I use the infinite sites model in my implementation of the importance

sampler. Extending this to a more general mutation model is straightforward.

However the infinite sites assumption provides a significant restriction on
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the genealogies that can be generated and this reduction in the state space

reduces the computational burden of calculating the likelihood. Although the

infinite sites assumption will, in general, not hold it has previously been used

for inference in the presence of recombination (see eg. [17, 27, 38, 39, 40]).

Care must be taken in assessing whether or not this model is appropriate to

the organism and type of data in question. For example, given human SNP

data, the infinite sites assumption may be realistic - repeat or back mutations

will have occurred on only a small fraction of the sites in the data. Note that

in practice the importance sampler considers only those sites segregating in

the population so that each sequence consists of finitely many (segregating)

sites. This does not violate the assumption that the data were generated

from sequences with infinitely many sites.

The derivation of the importance sampling scheme that I give here is dif-

ferent in motivation to those given in the population genetics literature so

far [17, 21]. In their paper Fearnhead and Donnelly consider generating an

ARG backwards in time and say that rates of events backwards in time are

unknown for an optimal importance sampler. However they note that the

forwards transition rates are known and use Bayes rule to calculate the back-

wards transition rates. I consider it more natural to consider only backwards

transition rates under the coalescent process and do not define any forwards

process for generating ARGs. It is known how to simulate genealogies, back-
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wards in time, under the coalescent with recombination in the absence of

data. However it is not known how to simulate such genealogies conditional

on data. The optimality of generating genealogies conditional on the data is

derived below.

Formally, I wish to calculate the probability of observing a particular

sample configuration, or data, D, and a set of parameters, ρ, θ: P (D | ρ, θ).

I calculate this quantity under the coalescent model and the SMC and use

exactly the same methodology to calculate in each case. For the sake of

simplicity I now use the shorthand P (D) to denote the probability of the

data, given the parameters ρ and θ under the relevant model. Importance

sampling can be used to calculate this quantity (see eg [41]) through the

approximation

P (D) =

∫ ∞

t=0

P (D | G)P (G)dG

=

∫ ∞

t=0

P (D | G)P (G) ×
1

Q(G)
(Q(G)dG) (4.1)

≈
1

M

M∑

i=0

P (Gi)

Q(Gi)
P (D | Gi) (4.2)

where the Gi represent genealogies generated from the proposal distribution

Q(.). The optimal choice of Q(.), Q∗(.), proposes genealogies according to

the conditional distribution of genealogies given the data [20]. In fact, given
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Q∗(.) defined by Q∗(G) = P (G | D) all genealogies generate exactly the

same importance weight, P (D). A simple proof of this follows: Consider one

sample genealogy from the distribution Q∗(.), G1. Then

∑

i

P (Gi)

Q(Gi)
P (D | Gi) =

P (G1)

Q(G1)
P (D | G1)

=
P (G1)

P (G1 | D)
P (D | G1)

=
P (G1)P (D)

P (G1, D)

P (D,G1)

P (G1)

= P (D).

(4.3)

Hence under Q∗(.) only one genealogy need be simulated to get a perfect

estimate of the probability of the sample, D. I refer to P (G | D) as the

target distribution. Note that the purpose of the SMC is not as a proposal

distribution for genealogies (indeed the support of SMC genealogies does

not contain the support of coalescent genealogies). Instead the proposal

distribution is a further approximation and when the SMC is employed the

target distribution is P (G | D) under the SMC model.

It is very hard to calculate the conditional density of a genealogy given

the data in one step. Fortunately, the coalescent process has a Markov struc-

ture when genealogies are simulated backwards in time. This enables sim-
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ulation of genealogies conditional on the data by, at each point in time,

simulating the next event backwards in time according to P (E | D), the

distribution of events conditional on the data. This is because a geneal-

ogy, G, can be viewed as a sequence of events, (E1, . . . , Ek), that act on

the sample configuration at certain times in the past, (T1, . . . , Tk). That is

G = {(E1, . . . , Ek), (T1, . . . , Tk)}. However the event sequence is sufficient to

define the sample configuration and, given the event sequence, there is no

information about the times at which the events occurred contained in the

data, so only the event sequence is changed by importance sampling. Now

P (E1, . . . , Ek | D) = P (E1 | D) × P (E2, . . . , Ek | E1, D)

= P (E1 | D) ×
k∏

i=2

P (Ei | (E1, . . . , Ei−1), D)

= P (E1 | D) ×
k∏

i=2

P (Ei | D(E1,...,Ei−1))

(4.4)

where DE1,...,Ei−1
denotes the transformed data after events E1, . . . , Ei−1 have

acted on it. This final equality holds as the Markov property ensures that

the distribution of the next event backwards in time is independent of all

previous events in the genealogy. Hence the probability of the data, given

the next event backwards in time, P (D | E), is equivalent to the probability
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of the data as transformed by event E, P (DE). That is

P (D | E) = P (DE). (4.5)

It is therefore possible to calculate the likelihood of the data by simulating

a sequence of events, each conditional on their distribution given the set of

haplotypes as altered by the previous events simulated. Genealogies can then

be generated iteratively according to:

P (E | D) =
P (D | E)P (E)

P (D)

=
P (DE)P (E)

P (D)
. (4.6)

To calculate the quantities P (D) or P (DE) it is necessary to simplify Equa-

tion 4.6, this is done in turn for each of the three event types: coalescence,

recombination and mutation. Let D = {h1, . . . , hn} and first consider a co-

alescence event between (without loss of generality) haplotypes h1 and h2 in

the sample at the current epoch in the simulation. Then

P (D) = P (h1, . . . , hn) = P (h1, h2 | h3, . . . , hn)P (h3, . . . , hn)

148



and

P (DE) = P (hC | h3, . . . , hn)P (h3, . . . , hn)

where hC is the haplotype created from the coalescence of h1 and h2 (note

that this need not be equivalent to either h1 or h2). It is then possible to

write

P (DE)P (E)

P (D)
=

P (hC | h3, . . . , hn)P (E)

P (h1, h2 | h3, . . . , hn)

=
P (hC | h3, . . . , hn)P (E)

P (h1 | h2, h3, . . . , hn) × P (h2 | h3, . . . , hn)
. (4.7)

Now suppose that E is a mutation event on haplotype h1 creating haplo-

type hM . Then

P (DE)P (E)

P (D)
=

P (hM | h2, . . . , hn)P (E)

P (h1 | h2, . . . , hn)
. (4.8)

Consider a recombination on haplotype h1 event between sites j and j + 1.

Then let h1,<j denote the haplotype identical to h1 at site j and all sites to

the left of j, h1,<j is given non ancestral sites (which have no allelic state) to

the right of site j. Define h1,>j as the complementary sequence: non ancestral

at site j and those to the left of j and taking the values of h1 at site j + 1
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and those to the right of j + 1. Then

P (DE)P (E)

P (D)
=

P (h1,<j | h2, . . . , hn)P (h1,>j | h1,<j, h2, . . . , hn)P (E)

P (h1 | h2, . . . , hn)
. (4.9)

The complete collection of weights must be normalised as the relative likeli-

hoods calculated are approximations.

Under the coalescent even the quantities above cannot be calculated effi-

ciently, so approximations must be used. In their paper Fearnhead and Don-

nelly used a Hidden Markov model for the data with a finite sites model. This

model is the progenitor of the models used in Chapter 2 and is the scheme

on which πF&D from that Chapter is closely based. In order to approximate

the quantities in Equations 4.7-4.9 I take a similar approach employing the

scheme πL&S, created by Li and Stephens and described in Chapter 2. The

full implementation of this scheme is presented in the next section.

4.2.1 Implementing the Method

Having outlined the Importance Sampling approach I now describe the spe-

cific implementation used here and discuss some of the various difficulties

and the decisions that must be taken in producing a genealogical importance

sampler. I lead the reader through the simulation of a simple genealogy and

describe the calculations that must be performed at each stage.
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Given a data set it is first necessary to decide on the parameters of the

simulation. The first important parameter is the mutation rate, θ. Although

it is possible to co-estimate θ using the importance sampler such an approach

would greatly increase the parameter space. Instead, as computational ef-

ficiency is of such importance, I use Watterson’s estimate of θ [42] as it is

extremely fast to calculate and the estimates of ρ did not seem sensitive to

small perturbations in θ. Secondly, a recombination parameter, ρ, must be

specified. This will normally be specified by the user. For simplicity I as-

sume constant recombination rate here, although the extension of the model

to an arbitrary recombination map is trivial (inference could become much

harder). Note that exploring the state space of all maps would be extremely

computationally expensive and without some severe restrictions on the type

of variation would be impractical with these methods at present.

Next the (prior) instantaneous rates of each type of event, and hence the

total event rate in the epoch must be calculated.

1. Coalescence: The coalescence rate is simply the number of pairs of

sequences that can coalesce

λC =
∑

i,j≤k, i6=j

IC(i, j), (4.10)

where IC(.) indicates whether a pair of sequences can coalesce under
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the appropriate prior. Under the Coalescent model Equation 4.10 gives

λC =
∑

i,j≤k, i6=j

1 = k(k − 1)/2 (4.11)

where k is the number of extant sequences. Under the SMC it is nec-

essary to calculate which pairs of sequences share ancestral sites, then

λC is the total number of such pairs.

2. Recombination: In this sampler the sequences are modelled as discrete

with gaps of different sizes between sites, the recombination events

are forced always to occur precisely half way between each site. The

recombination parameter above specifies the total recombination rate,

per sequence, at the start of the simulation. This is then broken up

between each of the gaps between segregating sites according to the

distance between each pair of sites, the total length of each sequence is

defined as 1 for this purpose. The total instantaneous recombination

rate, λR, is then taken as the sum over all sequences:

λR =
k∑

i=1

ρ

2
× (dr,i − dl,i) (4.12)

where dr,i and dl,i denote the right and leftmost boundaries of ancestral

material on the ith sequence respectively. Initially dl,i = 0 and dr,i = 1
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for all i. The prior weight of a recombination event between sites j and

j + 1 on a given sequence is ρ
2
× δj where δj is the distance between

sites j and j + 1.

3. Mutation: A constant mutation rate is assumed and the mutation rate

is divided evenly between each of the (finitely many) sites. To obtain

the total instantaneous mutation rate, λM , requires a sum over every

site on every sequence:

λM =
k∑

i=1

L∑

j=0

θ

2L
× IM(j) (4.13)

where each sequence contains L sites (segregating in the population)

and IM(.) is an indicator function which takes value 1 when site j is

ancestral and 0 otherwise. The prior weight for each individual possible

mutation is θ
L
.

These formulae specify the prior rates of each event at a given time in the

history of the sample. This, in turn, provides the distribution of the type of

the next event. If the genealogy is also of interest then given the total rate

of events, λ = λC + λM + λR, it is possible to simulate a time, t ∼ Exp(λ),

to the next event. However, the likelihood of the data is independent of

this time and so I consider only the event sequence here. Having calculated
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the prior rates P (E) in Equation 4.6 for each event it is then necessary to

estimate the relative probabilities of the data before and after each potential

event. First however it is possible to eliminate certain events by simple

observation. As an example, consider the data set in Figure 4.1. If the first

event backwards in time were a coalescence event between sequences 1 and

2 then their haplotypes would be the same. However, as this is not true

such an event would give rise to a genealogy, G, which gave P (D | G) = 0.

The importance sampler therefore never generates such events. Similarly,

under the infinite sites assumption each site can undergo mutation at most

once in the genealogy. Consequently mutation events can only occur at those

sites which contain a singleton in the sample. In practice it is necessary to

enumerate all of the possible events that could give rise to an infinite sites

genealogy that is compatible with the data. The only possible events for the

data in Figure 4.1 are:

1. A coalescence event between sequences C and D.

2. A mutation event at site one on sequence B.

3. A recombination event at any of the 8 gaps between the sites on the

sequences.

To calculate the weights given to each of these events by the importance

sampler it is necessary to go back to Equations 4.7 to 4.9. In order to
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B C DA

Figure 4.1: This figure shows all of the possible first events backwards in
time under the infinite sites model for this toy data-set.

use these formulae an approximation to the quantity P (h∗|h1, . . . hk) for any

haplotype h∗ and set of existing haplotypes {h1, . . . , hk} is needed. In their

paper Fearnhead and Donnelly propose a dynamic programming method that

approximates these values. In Chapter 2 I investigate a range of methods

which approximate these likelihoods. Using the results obtained in that work

I decided to use the scheme πL&S as this scheme was by far the fastest and

the likelihoods are strongly related to those of the other approaches.

Note that in the following description I order the sequences in the equa-

tions such that h1 (and sometimes h2) are the sequences affected by the event

being considered, merely for notational convenience.

1. In order to apply πL&S to Equation 4.7 it is first necessary to construct

the sequence hC (from Equation 4.7) using the proposed coalescing

sequences (which I name h1 and h2). This sequence is defined to be

non-ancestral at all those sites where both h1 and h2 are non ancestral

and due to the restrictions on coalescence events the types of h1 and
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h2 are identical at all sites where both are ancestral, so hC then takes

the types of h1 and/or h2 wherever these are ancestral. Note that

when recording these weights for the purposes of likelihood calculation

the coalescence weights must be multiplied by two. This is because

coalescing pairs are chosen in an ordered way, but there is no ordering

of the two sequences in coalescence events.

2. Similarly, in order to calculate πL&S(hM | h2, . . . , hk) the haplotype

hM must be constructed. This is achieved simply by altering h1 at the

appropriate site - so that it has the same type as the rest of the sample.

3. In the case of recombination a further approximation is made. This is

important as there are usually many possible recombination events and

the quantity πL&S(h∗ | h1, . . . , hk) is expensive to compute. Using the

same notation as in Equation 4.9 I now make the approximation that

P (h1,<j | h2, . . . , hk)P (h1,>j | h1,<j, h2, . . . , hk) ≈

P (h1,<j | h2, . . . , hk)P (h1,>j | h2, . . . , hk). (4.14)

This is close approximation as h1,<j shares no ancestral sites with h1,>j

so only affects the distribution of h1,<j indirectly. However, this approx-

imation allows a very significant computational saving. As discussed
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later I make the approximation that, in the dynamic programming al-

gorithm of πL&S, the probability of the type of a non ancestral site

given the rest of the sample is always 1. Note that intermediate val-

ues (or partial probabilities), P (h1 | h2, . . . , hn)<j, from calculating

P (h1 | h2, . . . , hn) in the dynamic programming algorithm correspond

to the probability of observing the partially ancestral sequence: h1,<j.

By creating a sequence h′
1 constructed by reversing sequence h1 the

quantities P (h1,>j | h2, . . . , hn) can be seen to be the partial probabil-

ities P (h′
1 | h2, . . . , hn)<(L−j). By storing these probabilities for each

j it is then possible to calculate the probabilities in Equation 4.14

using only the partial probabilities used in calculating πL&S(h1) and

πL&S(h′
1).

To choose from the possible events it is first necessary to normalise the quo-

tients from Equation 4.6 and then multiply them by their respective proba-

bilities under the prior.

To calculate the likelihood for each event it is necessary to record the

quantities P (E), the probability of E under the prior, and Q(E), the prob-

ability of E under the proposal distribution. Under both the prior and this

proposal distribution the probability of generating each genealogy is the prod-

uct of the probabilities of each event . Hence it is possible to calculate the
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importance weight, P (E)/Q(E), for each event and take the product of these

as the importance weight for the whole graph. After each event it is then

necessary to update the sampler, the new haplotypes need to be created, the

new rates for each event must be calculated and any record of the genealogy

may need to be updated. An example sequence of events is given in Figure

4.2. Note that this sequence of events is not equivalent to an ARG, and if

the genealogy itself is of interest then that needs to be stored separately.

Given the sequence of events the probability of the sample configuration is

simply 1 as all mutations are specified and uniquely specify the data. The

contribution towards the likelihood (in Equation 4.2) for this genealogy is

then the importance weight P (G)/Q(G).

I now consider some of the technicalities with the above approach. The

most important consideration being how best to handle non ancestral mate-

rial in the scheme πL&S.

4.2.1.1 The problems with Non Ancestral Material

When a recombination event occurs backwards in time the sequence on which

it acts is split into two parts. One part carries the ancestral material from

the left of the breakpoint and the other from the right. The rest of these

two sequences contain material which is not ancestral to the sample. There

is no need to simulate events that affect only non ancestral material. Non
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Figure 4.2: This diagram shows a full simulation using the importance sam-
pler. The colour grey indicates non ancestral material and the colour yel-
low indicates material that has reached its most recent common ancestor.
The letters C,M and R indicate Coalescence, Mutation and Recombination
events respectively. The sequence continues on the right hand side. Note that
events that occur in either non ancestral material or affecting sites which have
reached their most recent common ancestor need only be simulated if they
also affect ancestral sites that have not reached their MRCA. When calcu-
lating the likelihood simulation stops after the MRCA ancestor has been
reached at each site. Note that there may still be more than one lineage in
the ARG when this happens. Although, under the coalescent, it is possible
to simulate genealogies back to the single most recent common ancestor of
the whole sample this is not always possible under the SMC - there may
remain pairs of lineages which can never coalesce.
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ancestral types are unknown, and in any given epoch non ancestral material

can be treated as missing data. An important question is then: how can we

calculate the likelihood of data when some of the types are unknown? In

particular, how can we calculate the quantities in Equations 4.7 to 4.9 in the

presence of missing genotypes? There are two distinct problems here, and

they are often concurrent.

1. What is P (h1 | h2, . . . , hk) when one or more of h2, . . . , hk contain

missing genotypes?

2. What is P (h1 | h2, . . . , hk) when h1 contains unknown types?

One way to tackle such questions is to impute the types at non-ancestral

loci. This is the approach taken by Fearnhead and Donnelly [21] in their

importance sampler. The imputed types are generated according to their fre-

quency in the remaining sample in the epoch considered. It is then possible,

due to the approximate model of sequence evolution used in their likelihood

calculations, to sum over all possible imputations.

The same approach is possible using the conditionals πL&S used here

but the approach of explicit imputation was not taken for this importance

sampler. In case 1, the probability of observing an unknown type at site j
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given either a known type or an unknown type I used

Pr(H1(j)) =





1/2 if site j is still segregating in the sample

1 otherwise.

In case 2 I used

Pr(H1(j)) = 1. (4.15)

The question of how to calculate these likelihoods refers only to calcula-

tions in the proposal distribution. I attempt to find the best trade-off between

accuracy and computational speed. The equations above provide two gains

in speed, firstly the frequency of each type at each site need not be calculated

after every coalescence or recombination event. More importantly, the extra

computational time of summing over all possible imputations adds a further

burden to the most computationally intensive calculations in the importance

sampler. It is worth noting that the approach of imputing types according to

the frequency of types where those are observed is itself an approximation.

The types at the missing data are, sometimes strongly, dependent on the

surrounding sequence. An example of this is given in Figure 4.3.

In order to understand the reasoning behind Equation 4.15 it is useful

to consider what is meant by P (h1 | h2, . . . , hk). This is the probability of

observing h1 given the already observed sequences in the sample. However,
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Figure 4.3: These two data sets illustrate how imputing types at non ancestral
material based only on the frequency of that type in the sample might lead
to inaccurate imputed frequencies of types. The grey colour indicates non
ancestral material. On the left hand side the probability of observing the
blue type might reasonably be assumed to be 2/3. However on the right
hand side the rest of the haplotype structure indicates a higher probability
of a blue type as there is some evidence for linkage disequilibrium between
the first two sites and the third site.

we implicitly condition on having actually observed the types at h1. If we

consider the (unusual) question: What is the probability of observing the

unknown genotype at position j on h1 given that we were unable to type h1

at this locus? This leads to the standard missing data approach - and we get

a probability of 1.

A related problem, when considering the conditional probabilities from

Equations 4.7 to 4.9, is how to treat ancestral material that has reached its

MRCA. However in this case the MRCA has, by definition, been reached on

all sequences and so all of the types are the same. These sites therefore do

not contribute to the overall likelihood, and in the dynamic programming

algorithm this is achieved by using a emission probability of 1.
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4.2.2 Rephrasing the problem

Note that in the current formulation of the importance sampler the following

approximation is used to calculate the probability of the data:

P (D) =

∫
Q(G)

P (G)

Q(G)
P (D | G)dG ≈

1

M

M∑

i

P (Gi)

Q(Gi)
P (D | Gi) (4.16)

where the genealogies in the summation on the right are simulated from

Q(.). However, when the genealogies are augmented with mutation the data

is defined by the genealogy, so

P (D | Gi) =

=





1 if Gi gives rise to the data

0 otherwise.

This means that many of the terms in equation 4.16 are zero and this is used

to improve the efficiency of Q(.). It is not possible for the Q used here to

propose genealogies that do not give rise to the data. Technically this makes

Q an invalid proposal distribution, as the support of P should be contained in

the support of Q. However, the estimate is not affected as those genealogies

not in the support of Q will always supply 0 weight in the approximation.

However, it is possible to reformulate this method such that this tech-
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nicality does not arise, and it leads to a possible improvement in efficiency.

Note that, by Equation 4.17

∫
P (G)P (D | G)dG =

∫

G∈Γ

1 × P (G)dG (4.17)

where Γ is the set of all genealogies that give rise to the data. In this for-

mulation the total state space is Γ, the genealogies are distributed uniformly

throughout Γ and the integral is that we wish to estimate is of the quantity

P (G), which represents the prior weight of that genealogy under the prior.

Importance sampling can now be used to approximate this new integral, so

that

∫

G∈Γ

P (G) × 1dG =

∫

G∈Γ

P (G) × Q(G)
1

Q(G)
dG ≈

1

M

M∑

i

P (G) ×
1

Q(Gi)

(4.18)

where the genealogies are sampled from Q(.), hence Gi ∈ Γ. Note that here

the importance weights are proportional to 1/Q(Gi). This formulation leads

to exactly the same estimate of the likelihood as in Equation 4.6.

One method for improving the efficiency of an importance sampler (see

eg. [41]) is to replace 1/M in the sum on the Right hand side of Equation
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4.18 by the sum of the importance weights. That is, proposing that

1

M

M∑

i

P (Gi)

Q(Gi)
≈

(
1/

M∑

i

1

Q(Gi)

)
×

M∑

i

P (Gi)

Q(Gi)
(4.19)

Although it is stated in Liu [41] that this estimator is only slightly biased

and that it is often a good approximation to the integral of interest this was

not found here.

Consider the optimal importance sampler, that is, Q∗(.) such that Q(G) ∝

P (G) (the prior probability of Gi), remember that the genealogies are re-

stricted to those which give rise to the data. Note that this is equivalent to

the optimal importance sampler in the first formulation because:

Q∗(G) = P (G | D) = P (D | G)P (G)/P (D)

=





P (G)/P (D) if Gi gives rise to the data

0 otherwise.

It can now be seen that this does not lead to a good approximation to

the likelihood as, substituting the optimal importance sampler into Equation
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4.19 we get:

(
1/

M∑

i

1

Q(Gi)

)
×

M∑

i

P (Gi)

Q(Gi)
= P (D)/P (D) ×

∑M
i 1/P (D | G)∑M

i 1/P (G)P (D | G)

and as P (D | G) = 1 for all G in this case this becomes

M∑M
i 1/P (Gi)

. (4.20)

Thus this approximations suggests that a good estimate of the likelihood is

the reciprocal of the harmonic means of the prior densities of the genealogies

compatible with the data. However, it is easy to see that this is not a good

estimate, consider the approximation in 4.19, each of the terms Q(Gi)/P (Gi)

is an estimate of the probability of the data. For an optimal Q each of these

terms is in fact precisely P (D). However, in this case the expression on the

right hand side of the approximation gives:

(
1/

M∑

i

1

P (Gi | D)

)
×

M∑

i

P (D) =
M × P (D)∑M

i
1

P (Gi|D)

. (4.21)

Given that P (Gi | D) ≤ 1, this requires P (Gi | D) ≈ 1 ∀i. Hence this is only

a good approximation to the P (D) when the genealogies are well specified by

the data. Unfortunately, in the presence of recombination, the data is highly

uninformative about the genealogies and the quantities Q(Gi) are generally
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very small, this is true even under the optimal importance sampler.

4.2.2.1 An approach to improving efficiency

A natural approach to approximating the optimal importance sampler con-

siders every possible event backwards in time and chooses according to the

(approximate) distribution of events conditional on the data. However, calcu-

lating each of these approximate conditional probabilities is computationally

very expensive so, in their paper [21], Fearnhead and Donnelly propose a

simplification designed to reduce this computational burden. Instead of cal-

culating the full weights for all possible events they first choose a haplotype

according to the prior rate of events. More formally, denote the fraction of

sites on sequence hi that are ancestral by pm,i and let dr,i be the total recom-

bination distance on sequence i between ancestral sites. Also note that the

total number of sequences that hi can coalesce with is (k − 1). Fearnhead

and Donnelly then approximate the total rate of events involving hi by the

quantity

θ

2
pm,i +

ρdr,i

2
+

(k − 1)

2
. (4.22)

To choose a sequence they then normalise these rates to create a probability

of choosing each sequence. This method is not quite as accurate an approxi-

mation to the conditional probabilities as using the method so far described
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as it does not condition on the data when choosing the sequence to take part

in the next event. I shall call this the Fearnhead approximation.

A technicality that arises from choosing haplotypes in this way is that

there are two potentially unequal routes to choosing each possible coalescence

event between two sequences, denote the two relevant sequences as h1 and h2.

In order to correct for this the coalescence rate in 4.22 is half of what might

have been expected with a coalescence rate of 1 for each of the remaining

k − 1 sequences. However, in itself this is not sufficient. It is necessary to

calculate the probability of generating this coalescence given that either h1 or

h2 were chosen. That is, if a sequence, h1, were chosen using the Fearnhead

approximation, and the event chosen for h1 were a coalescence event with h2.

It is then necessary to calculate all of the weights on h2, normalise these and

to calculate the probability of choosing h2 and then a coalescence event with

h1 given that h2 was chosen. Note that this correction cannot be ignored as

it is required to calculate the appropriate importance weight, and is not a

refinement to the proposal distribution.

I now investigate some of the properties of using the Fearnhead approx-

imation. I first consider the case of very small ρ and try to demonstrate

that the new approach may perform badly in here. First of all I consider

a completely artificial data set which illustrates why choosing a sequence

to act on without conditioning on the data has the potential to reduce ef-
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Figure 4.4: The data in this diagram is fully compatible with a tree. When
the recombination rate is low the distribution of genealogies conditional on
the data should contain very few recombination events.

ficiency. Figure 4.4 shows a data set with no incompatibilities. However,

when considering the first event while simulating a genealogy backwards in

time each sequence has an equal probability of being picked under the Fearn-

head approximation. Assume that the ancestral and derived types are not

known (the effect is more severe when they are, as only one sequence can

mutate, not two). No coalescence events are possible with this data as no

two sequences are identical. So, if any of the sequences from 2-5 are picked,

mutation events cannot be simulated as the infinite sites assumption allows

only singletons to mutate. Therefore recombination events must be simu-

lated when sequences 2-5 are chosen. However, when ρ ≈ 0 this is a very

poor choice of event. To gauge the effect this has on the importance sampler

I ran both the full conditional scheme and the Fearnhead approximation on

this data set. I simulated 10,000 genealogies under ρ = 1 × 10−9 and both

approximations calculated the log likelihood as -23.3. However, the average
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number of recombination events under the Fearnhead approximation was 2.8

per simulation. These recombination events lead to considerable variation in

the likelihoods estimated. Under the full method not a single recombination

event was simulated and the estimates of the likelihood were very similar

between runs. The first ten likelihoods under both schemes are displayed

in Table 4.1. The full method took 77 seconds (for all of the runs) while

the Fearnhead approximation took only 49 seconds to calculate. For data

constructed in this way the Fearnhead approximation performs much worse

as more sequences are added. These data sets are not typical of population

genetic data or of data simulated under the coalescent. However, the Fearn-

head approximation performs similarly poorly for most data sets analysed

under small ρ, even those with incompatibilities.

The real purpose of these importance samplers is to analyse data in the

presence of significant recombination and so this comparison does not reflect

the true relative performance of the different approaches, it merely provides

an intuition into the differences between the two schemes and when one might

outperform the other. In fact, for higher values of the recombination rate

the Fearnhead approximation seems to outperform the full method quite

considerably. The time taken to simulate each genealogy is reduced, and

the variation in the likelihoods is also often reduced. It is not clear why

the variation in likelihoods should be reduced, however it is possible that
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Run Full Scheme Fearnhead Approximation
1 -24.8 -67.2
2 -24.8 -113.2
3 -24.3 -43.0
4 -24.6 -90.3
5 -24.3 -111.9
6 -24.0 -113.1
7 -24.2 -89.9
8 -24.3 -88.3
9 -24.3 -88.7
10 -24.6 -109.5

Table 4.1: The first ten likelihoods calculated under both schemes, the full
scheme and the Fearnhead approximation where a haplotype is first chosen
according to the prior rates of events. Although there is considerable vari-
ation in the likelihoods in the Fearnhead scheme they do converge to the
same likelihood as calculating the full scheme. However considerably more
genealogies must be simulated in this case in order to achieve convergence.

there are certain situations where the approximate conditionals cause some

events to be severely under-weighted causing certain genealogies to be very

unlikely under the proposal distribution when the full method is used (see, for

example, Figures 4.13 and 4.14 later on). Perhaps the method for choosing

haplotypes according to the prior rates flattens the distribution of possible

events and allows a more uniform exploration of certain parts of the state

space.

4.2.3 Simulation Study

In order to assess the behaviour of the two models for performing inference I

wrote a program to implement the Importance Sampling method described

171



above in C++, using both the coalescent and the SMC models.

To simulate the data I used the program ‘make sample’ by Hudson. To

be confident that the importance sampling scheme would generate accurate

likelihood estimates I used very small data sets. The values under which the

data were simulated were θ = 3 and ρ = 5, there were 10 sequences in each

sample and 100 samples in total. This gave a range of numbers of segregating

sites from 1 to 20, with the bulk being between 5 and 15 sites long.

The importance sampler, under both the Coalescent and the SMC, was

run on each of these data sets. I calculated the likelihood on a grid of values,

ρ ∈ {1 × 10−9, 0.1, 0.3, 0.5, 1, 3, 5, 7, 10, 13, 16, 20}

using 500,000 independent runs under both models, for each value of ρ and

for each data set. These genealogies were also used to estimate the likelihoods

at intermediate values of ρ, by correcting the importance weights from the

genealogies for the different underlying recombination rates. However, under

such a coarse grid it is questionable whether the likelihoods for intermediate

values of ρ would be well estimated using this approach. This means that

only approximate values for the MLE can be calculated. However, the signal

for ρ is very weak in the data sets that the importance sampler can anal-

yse effectively. It may not be possible to correctly estimate the underlying
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recombination rate to within even a factor of ten in some of these samples.

So there is little value in calculating ρ at a finer grid of points. The time

to the most recent common ancestor as well as the total time in the tree

at the left and right most edges were recorded, as well as the number of

recombination events in each genealogy. The primary analysis consists of

examining how well the likelihoods were estimated and comparing the two

models, Coalescent and SMC.

4.3 Results

The SMC is only a useful model if inference under the SMC reflects bio-

logical reality. I use the ability to approximate the coalescent model as a

measure of how successful the SMC is in this task. In particular I investigate

whether likelihoods calculated under the SMC are similar to those calculated

under the Coalescent. Encouragingly Figure 4.5 shows that the likelihoods

calculated under the two models are very similar. However, in this imple-

mentation and using the parameter values here, the time taken to calculate

the likelihoods was not greatly reduced under the SMC. This is because only

relatively small values of ρ could be explored in this study. The Coalescent

model and the SMC are very similar when ρ is small. Unfortunately the

parameters of inference are currently severely restricted because the impor-
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tance samplers converge very slowly for large numbers of segregating sites. It

would be very interesting to understand the relationship between estimates

of ρ under the two models. Preliminary analysis suggest that there is a

slight decrease in estimated recombination rates under the SMC. However

it is difficult to perform a proper analysis of this effect because very few of

the data sets had significant maximum likelihood peaks that were not at the

boundaries explored. This effect need not harm inference under the SMC a

great deal, but it does suggest that recombination rate related results from

the SMC cannot be implemented in full coalescent methods downstream, in-

stead the SMC should be used throughout for consistency. Finally, it was

also apparent in those data sets analysed that the correlations in tMRCA of

the sample across sites separated by a certain recombination distance were

reduced under the SMC, as expected (data not shown).

ESS

I wish to analyse the performance of the importance sampling scheme and

how this performance varies with changes in the underlying rates and the

dimensions of the data. With any Monte Carlo estimator it is necessary to

assess whether or not the process has converged. Unfortunately it is often

hard to assess how certain we can be of convergence given the results so

far. As, in general, only a sample of the total space has been explored
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Figure 4.5: This graph shows the log likelihoods under the coalescent against
those under the SMC for all of the datasets under ρ = 20. I chose this value
as the differences between the SMC and coalescent likelihoods are expected
to be greatest when ρ is large. It is worth noting that the estimates are least
accurate when ρ = 20 and much of the deviation from perfect correlation for
larger data sets (with lower likelihoods) is probably due to inaccuracy in the
Monte Carlo estimates.
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it is usually impossible to know how significant the contributions from the

unexplored regions of the state space would be. One approach to estimating

convergence is to assume that the variation in future samples will be similar

to those already simulated. This is an imperfect approach, but I use it here

to get an indicator of how well the importance sampler estimates different

likelihoods.

Define the effective sample size, or ESS, of a set of simulations of size N

to be

SE = N ×
1

1 + V 2
C

(4.23)

where VC denotes the coefficient of variation of the N sampled likelihoods.

The ESS (see eg. [43] pp283-284) is a linear approximation to the efficiency

of an importance sampler relative to the optimal importance sampler. That

is, how well the approximate sampler explores the posterior distribution of

interest (in this case ARGs relating to the sample) and in particular how

the variance in statistics of the genealogies decreases as extra samples are

introduced. This formula is not guaranteed to converge to the true relative

efficiency, but it is a simple measure of performance that is easy to calculate.

Larger values of SE indicate greater efficiency and 1 ≤ SE ≤ N . It is normally

not possible to calculate the true value of even SE as the mean and variance

of the target distribution are, in general, unknown. However we can estimate

176



the mean and variance of the sample and use these to estimate SE:

ŜE = N ×
1

1 + V̂ 2
C

(4.24)

Unfortunately the performance of genealogical importance samplers is poor,

that is: even when large numbers of genealogies have been simulated there

may be genealogies which would contribute very large amounts to the esti-

mated likelihood that have not been sampled. If these genealogies were sam-

pled they would also significantly increase the sample variance and hence

greatly reduce the effective sample size. This leads to the situation that

sometimes estimates of SE are strongly upwardly biased. Low values of SE

should therefore be treated with suspicion (as they may not be low enough)

and in some situations even very high values may exaggerate the evidence

for convergence. Another effect is that inflated ESS values tend to be under-

estimates of the likelihood while overestimates of the likelihood tend to have

very low estimates of the ESS, this effect is shown in Figure 4.6

Despite the large degree of uncertainty in estimates of the ESS there are

practical reasons to believe that there is information in this measure. When

insufficient runs are used to effectively sample the rare highly contributing

ARGs then estimates in the likelihood should be poor. However, by examin-

ing the similarities of the likelihoods between independent estimates of the
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likelihood it can be seen that there is very little variation in the estimates

produced for the number of runs used here. This encourages the belief that

the ESS is approximately correct and can be used as a guide to comparing

the performance of different methods when the estimates of ESS are high.

4.3.1 Performance differences between the SMC and

the Coalescent

Although full inference under the SMC is not yet possible for large data sets,

there is still a notable improvement in the efficiency of generating likelihood

values under the SMC at higher values of ρ. This is due to the simpler

space of ARGs under the SMC. In each epoch there are fewer possible events

(due to restrictions on coalescence events). Also, as there is no trapped non

ancestral material, there are (on average) fewer recombinations (see Figure

4.7) in the ARGs. This reduces the complexity of the space of ARGs that

contribute significantly to the likelihood. Although it was not possible to

calculate accurate likelihoods for all the data sets for very high ρ where

this has been tried the SMC improvement is much more extreme for higher

ρ (data not shown). Under ρ > 100 coalescent genealogies often contain

thousands of recombination events created by coalescing lineages with very

small amounts of ancestral material and then recombining on the resulting
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Figure 4.6: This graph shows estimates of the log coalescent likelihood plot-
ted against the estimated ESS for 250 independent subsamples of 25000 like-
lihood estimates for data set 52 (9 segregating sites). It can be seen that
there is significant difficulty in estimating the effective sample size. It can
also be seen that high ESS values can be misleading and cause bias. The
likelihood is strongly correlated with the reported ESS. This effect is caused
by rare simulations that produced a genealogy with very high weight. Such
runs increase the variance significantly while also increasing the estimated
likelihood. The minimum estimated ESS was 5.56 while the maximum was
264, and this is very typical for such a sample. Note that the coefficient of
variation in estimated ESS values was 0.6 while the coefficient of variation
for the mean likelihood estimates was less than 0.2. In fact overall estimates
of the ESS were significantly more variable than estimates of the likelihood
itself. The estimate of the likelihood from 500,000 independent genealogies
is given by the horizontal grey line.

179



lineage to give rise to the original pair of sequences. This pattern can repeat

many times in one genealogy. Under the SMC far fewer recombinations occur

as ‘trapped non-ancestral material’ (see Chapter 3) cannot be created under

the SMC. Figures 4.8 and 4.9 show that this reduction in the state space

does lead to improved efficiency, however the improvements due the to SMC

are overshadowed by the fact that both models are severely restricted in the

quantity of data that can be practically analysed.

4.3.2 The Performance Drops considerably as Data size

increases

The performance of the importance sampler varied dramatically between

data sets. For data sets with fewer than 10 segregating sites about 5 hours

computing time on a standard Pentium 4 desktop computer was enough to

calculate an very accurate likelihood curve from 500,000 samples for ρ up to

20. However for 20 segregating sites 100 hours of computing time produced

likelihoods with evidence of significant variation, in one case by almost an

order of magnitude. The rate of convergence of the likelihood also has a

strong impact on the convergence to the true distribution of other statistics

observed, such as the estimated average time to the most recent common

ancestor or the estimated recombination rate. As the likelihoods differed
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Figure 4.7: This graph shows the number of recombination events in each
genealogy averaged over all data sets and all 500,000 runs. In black is the
average number of simulated recombinations under the coalescent. In red is
the average simulated under the SMC. The green and blue lines show the
estimated posterior mean number of recombinations for the coalescent and
SMC respectively. These were calculated by weighting the number of recom-
bination events in each genealogy by its importance weight. The proposal
schemes lead to, on average, more recombination events than the posterior
distribution because, when incompatibilities are present, the proposal cannot
always identify where recombination must occur (see Figure 4.13). This leads
to recombinations in locations that do not remove any incompatibility (and
coalescence events that may even introduce incompatibilities); further recom-
bination events are then later required to remove these incompatibilities and
reach the common ancestor.
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Figure 4.8: These graphs show the proportion of time that, for the 100
data sets analysed in the study, the coalescent ESS was bigger than the
SMC ESS (black) and vice versa (red) (500,000 independent runs were used
to calculate each likelihood). On the left hand side the genealogies were
simulated with ρ = 1 and on the right with ρ = 20. The horizontal axis
denotes the factor by which the the ESS must have increased for inclusion
at that point. For example, the right hand graph shows that roughly 1
in 5 likelihoods calculated under the SMC had an associated ESS of more
than 5 times that of those generated under the coalescent. It is clear that the
advantages of using the SMC only start to become significant for larger values
of ρ. The time taken per genealogy simulated is not taken into consideration
here, that can be seen in Figure 4.9.
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Figure 4.9: These histograms show the distribution of the CPU time under
the coalescent (to estimate the likelihood using a 500,000 runs) divided by
the CPU time under the SMC for the same likelihood also using 500,000 runs.
On the left is the histogram for ρ = 1 and on the right for ρ = 20. Note
that the SMC performs slightly worse for very small values of ρ, as there is
slightly more to check under the SMC. However, when ρ increases there is a
significant saving in the time required to simulate each genealogy.

by significantly less than an order of magnitude between different values

of ρ the lack of convergence for large numbers of sites severely reduces our

ability to estimate a likelihood curve or maximum likelihood estimate, unless

methods using driving values were used. However, these approaches were not

explored extensively here after initial results showed that highly misleading

results may be obtained with little diagnostic power. Figures 4.10 and 4.11

give an indication of how the performance changes with size of the data set,

measured by the number of segregating sites.
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Figure 4.10: This scatterplot shows the log of the ESS estimates against the
number of segregating sites for 500,000 runs, calculated for each data set at
ρ = 5. The Coalescent values are in black and the SMC values are in red.
The models suffer very strongly from increasing the length of the sequences.
Note also that as the estimated ESS gets lower the estimates will also tend to
be an overestimate of the likelihood. This means that the true relationship
is probably even more severe.
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Figure 4.11: This scatterplot gives an indication of the computing time taken
to generate 500,000 genealogies with 10 sequences under ρ = 5 against the
number of segregating sites in each sample. The values for the SMC are
plotted in red and the coalescent times in black. It is worth noting that this
graph can only be used as an indication of the times that various data sets
required to be completed as this is a näıve measure, simply taken by sub-
tracting the time that the particular analysis was started from its completion
time. Many factors may have influenced this, such as jobs being temporarily
halted for other purposes. However, the trend seems clear and it’s apparent
that the time per simulation increases significantly with the number of sites
to be analysed.

185



How Performance Changes with Different Sample Sizes

As well as changes in the number of segregating sites I also investigated

changes in performance when different numbers of sequences were analysed.

A full scale analysis with hundreds of data sets with large numbers of se-

quences is impractical. I analysed a small number of data sets with many

sequences, but repeated the analyses using different proportions of the total

set of sequences. From this it seems that increasing the number of sequences

has a much less critical effect on the ability of the importance sampler to es-

timate the likelihood (than increasing the number of sites does). A summary

of these results can be found in table 4.2.

While analysing these data it became apparent that a further computa-

tional saving could be made for data with large numbers of sequences. In

these cases coalescence events happen at a much greater rate than when the

number of sequences is small. When the event types were recorded it was

common to see many coalescence events before any other event types were

observed. Furthermore most coalescence events have very similar, or iden-

tical weights in the importance sampler, when multiple mutation events are

possible in an epoch these also tend to have identical weights. Note, however,

that different recombination events can have very different weights, when ρ

is small some recombinations are vastly more likely than others. The obser-
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n ρ ESS Time ESS Time
Coalescent SMC

2 10−9 50000 59 50000 58
2 1 36797 93 36515 86
2 20 6769 680 5930 463
3 10−9 25128 131 25175 135
3 1 18586 145 18507 205
3 20 2594 1428 3233 896
5 10−9 30733 195 30730 188
5 1 22014 276 22878 272
5 20 821 1997 353 1225
10 10−9 5902 583 5984 574
10 1 9083 816 9621 835
10 20 15 3489 108 2562
20 10−9 595 2365 611 2434
20 1 1567 3439 2654 3494
20 20 31 12730 5.2 9291

Table 4.2: The performance of the importance sampler when subsets of var-
ious sizes are taken from a data set with 100 sequences. Similar results were
found in all data sets observed (data not shown). The data was simulated
with θ = 3 and ρ = 5, there were 13 segregating sites and 50,000 independent
runs were used to calculate the likelihood for each configuration of parame-
ters. The time is given in seconds (real time) taken to complete the 50,000
runs for that number of sequences and value of ρ. The runs for 100 sequences
would take about 9 days of computing time. Note that the ESS values for
n = 20 show signs of unreliability (ESS is normally seen to, and is expected
to, drop as ρ increases). Given these probably unreliable ESS values for 20
sequences it is likely that many months of computing time would be required
to properly estimate the ESS values for n = 100.
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vation that coalescence events comprise nearly all of the initial events when

large numbers of sequences are analysed allows the construction of simplified

approaches. These can produce significant reduction in computational bur-

den of the likelihood calculation. There are many possible implementations

that could be used, so I describe a general approach here.

1. Choose an event type according to the prior rates of events.

2. If this event is a recombination event then use the usual dynamic pro-

gramming methods to approximate the likelihood of the data given each

recombination event. Choose from each possible recombination event

using the resulting weights (as in the earlier parts of this chapter, but

with no coalescence or mutation events possible).

3. If the event type is a coalescence (or mutation) then choose uniformly

and at random from the possible coalescence (or mutation) events.

Note that under this scheme certain significant errors could potentially be

made. For example, if the recombination rate is low, but the data contain an

incompatibility then recombination events that remove this incompatibility

will be chosen too rarely, giving rise to high variance in likelihood estimates.

Also, when sequences contain non-ancestral material some coalescence events

could create new incompatibilities - greatly reducing the contribution for that
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genealogy. In order to make this method effective it is necessary to exercise

care in its use. It will take considerable thought and testing to find the best

compromise between fast simulation of genealogies and accurate proposal

distributions.

4.3.2.1 How does approximating the optimal importance sampler

compare to previous approaches?

Although it is discussed extensively in their paper [21] it is worth noting again

that the approach developed by Stephens and Donnelly [20], later extended

by Fearnhead and Donnelly, is a considerable improvement over pre-existing

methods. The previous approach used by Griffiths and Marjoram [17] did not

consider the form of optimal importance sampler. In this approach although

certain events could be eliminated through the infinite sites assumption and

compatible genealogies could then be produced, the rates of the events at

each stage were not adjusted for the likelihood of the resulting sample con-

figuration.

Although this should lead to much faster simulation of events, and per-

haps genealogies, the resulting importance sampler is in fact far less efficient

than that of Fearnhead and Donnelly. Intuitively this is because recom-

bination events are not placed in regions of incompatibility, but uniformly

throughout the data. This leads to a situation where, although more recom-
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bination events are simulated when the recombination rate is higher, when

the recombination rate is low many events might still need to be simulated

in order to remove incompatibilities from the data. Indeed even for higher

recombination rates the average number of recombination events simulated

under this scheme was considerably higher than under the scheme used here.

Tables 4.3 and 4.4 show the results from the Griffiths and Marjoram

scheme and the scheme used here when run for 30,000 iterations on data set

1. Figure 4.12 shows the likelihood curves for ρ under the two schemes to

give a more visual indication of convergence. Note that the increased number

of recombination events simulated under the conditionals which did not use

the information in the data led to more computing time being required than

under the more expensive conditional schemes in some cases. Given that the

optimal importance sampler requires information about the likelihood of the

resulting sample configuration it is not surprising that methods which ignore

this factor perform badly. This important observation applies to all impor-

tance sampling - in any scenario where chosen events will affect the likelihood

of the resulting sample configuration to significantly differing degrees these

likelihoods must be considered to achieve maximum efficiency.
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ρ Likelihood ESS R̂ R̂W Time Taken
1 × 10−9 -33.9 9445.9 0.5 0.0 594

0.1 -34.0 8256.9 0.7 0.2 548
0.3 -34.0 6835.1 1.1 0.5 583
1 -34.0 6336.8 1.6 0.8 607
1 -34.1 2836.1 2.9 1.7 646
3 -34.3 975.4 8.8 5.0 975
5 -34.5 769.4 15.4 8.4 1321
7 -34.6 148.5 21.8 11.7 1621
10 -34.9 222.1 30.9 16.4 2085
13 -35.0 116.8 39.9 20.8 2607
16 -34.9 23.8 49.3 25.9 4176
20 -35.5 82.1 59.9 33.4 5087

Table 4.3: This table shows the results for the first dataset obtained from
30,000 genealogies simulated under the scheme described in this Chapter. I
used the approximation of haplotypes being chosen according to their prior
rate of events to improve efficiency. The symbols R̂ and R̂W denote the
average, and weighted average numbers of recombination events in the sim-
ulations. Under this scheme the likelihoods are well estimated. This can
be seen from the consistent trend in ρ and the high values of ESS reported.
Repeating the analysis also gave very similar values for the likelihoods (al-
though some variation does occur at the third significant figure for higher ρ.)
It is also worth noting that the average number of recombination events sim-
ulated under the proposal distribution has a moderately good relationship
with the expect number of recombination events under the target (weighted)
distribution.
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ρ Likelihood ESS R̂ R̂W Time Taken
1 × 10−9 -34.1 13.8 0.0 0.0 223

0.1 -34.3 32.4 2.0 0.2 255
0.3 -34.4 8.4 5.5 0.5 385
1 -34.8 7.9 8.7 1.0 658
1 -34.8 3.3 15.4 1.7 872
3 -35.5 4.0 35.1 9.7 1776
5 -38.2 1.9 49.8 17.5 2547
7 -38.0 2.0 62.2 19.3 3329
10 -41.2 3.6 78.4 30.5 4501
13 -41.2 6.3 92.9 43.8 7083
16 -41.3 3.1 105.9 51.8 4828
20 -38.3 1.0 121.5 55.0 5869

Table 4.4: This table shows the results for data set 1 obtained using 30,000
genealogies simulated under a scheme where the likelihood of the sample
configuration after each event is not used. The likelihoods do not appear to
be well estimated, the pattern observed between different values of ρ describes
an implausible likelihood surface and the estimated values of the ESS are
very low (and likely to be significantly over estimated). The reason that
this scheme performs so badly is related to the average number of simulated
recombination events in each genealogy. The scheme proposes very large
numbers of recombination events, even when the underlying recombination
rate is very low. This shows that the genealogies simulated are not a good
approximation to the true conditional distribution of ARGs for this data.
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Figure 4.12: This figure shows the likelihood curves generated by using the
prior rates of events when importance sampling (in blue) and using the like-
lihood of the resulting sample configuration (in red). The blue curve seems
not to have converged as the shape seems unlikely. The red curve shows
roughly consistent estimates on all 20 independent values of ρ calculated. It
is possible to tell from the red curve that this data provides no evidence for
recombination. The total time to produce these results was 3.5 hours for
the red curve and 5.5 hours for the blue curve. However the program was
not optimised for the approach which only used the prior rates of events and
some further gains could probably be made if dedicated software were used.

193



4.3.3 Discussion

The data sets analysed here used only 10 sequences and all of the meth-

ods struggled when the number of segregating sites approached 20, even for

days of computing time (using one processor). Although such data could be

comfortably analysed using a collection of computers or with a more power-

ful processor it is close to the limit of this approach. Unfortunately modern

data sets are usually far bigger than those considered here and an importance

sampling approach would be completely impractical for most applications.

The methods I believe would be most effective at increasing the efficiency

of importance sampling methods would focus on improving the conditional

likelihoods used to calculate the weight of each of the possible next events in

each epoch. The current approaches ignore much of the genealogical infor-

mation in the data, these ideas are discussed more fully in Chapter 2. This

lack of genealogical interpretation leads to underestimating the full impor-

tance of a recombination event that removes an incompatibility in the data

- when the recombination rate is low these events will not be proposed often

enough. When the recombination rate is low incompatibilities are confused

with mutation events. This leads to the schemes underestimating the impact

that incompatibilities have on the likelihood of a sample configuration (see

Figure 4.13). Also even when the schemes recognise that it is essential to

194



simulate recombination events there can still be considerable confusion about

the best position for this event and the consequences of each possible recom-

bination, some intuitive examples are given in Figure 4.14. Although these

examples assume a low recombination rate to clearly expose the inaccuracies

of the likelihood approximations, these sorts of problem can be observed to

cause serious inaccuracies in the distribution of genealogies given the data.

Tackling these issues and providing a closer approximation to the coalescent

likelihoods may well be the key to creating powerful importance samplers.

One approach to including this information would be to use summaries

of incompatibility in the data, as this is perhaps the strongest evidence for

recombination in the data. When an event under consideration reduces the

estimated minimum number of recombination events required to explain the

data this event could be up-weighted; this would reflect the increase in like-

lihood of the resulting data missed by the conditional approximations.

Another approach might be to try to characterise the simulations that

led to very high importance weights. The quotient P (G)/Q(G) is high for

these genealogies (that is, the genealogy was relatively likely under the prior,

compared to the proposal distribution). It could be useful to understand

what aspects of these genealogies are unlikely under Q(.) when in fact they

are genealogies with high weight under the prior that are compatible with

the data. Understanding these anomalies and appropriately altering the pro-
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Figure 4.13: This diagram represents a toy data set which illustrates the
inability of the πL&S scheme to recognise the importance of incompatibilities
in data. The data here contains an incompatibility and so at some point
in the history must undergo a recombination event. Under a small value of
ρ genealogies for this data will undergo the two specific events before any
others are likely occur. One is a coalescence event between the two iden-
tical sequences, another is a recombination event that on any unique type
results in data with no incompatibility. Under the schemes described here
the coalescence event gets a much higher weight and is chosen much more
often. However under the true posterior distribution recombinations and co-
alescence events are roughly equally likely. The reason for the disparity is
that the approximation πL&S (or any of the approximations in Chapter 2)
do not give sufficiently low likelihoods for the data which is incompatible.
As explained in Chapter 2 the schemes confuse these incompatibilities with
repeat mutations and when the recombination rate is significantly different
to the mutation rate this causes very inaccurate likelihood estimates. An
interesting side effect of using the Fearnhead approximation mentioned ear-
lier in this chapter is that the ESS is much greater. This is because the
recombinant sequences are chosen at random and, once such a sequence is
chosen, a recombination event must occur. This may be an example of why
this approximation manages to perform well.
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Figure 4.14: The diagram on the left represents a simple data set which can
be used to illustrate some subtle problems with the πL&S approximation.
The first inaccuracy created in using these approximations is that, when the
recombination is very low, recombinations are simulated similarly often at
the first gap between sites as the second. However, with a low recombination
event only genealogies with one recombination event should commonly be
sampled. A recombination event must occur in the first gap between sites but
none is needed in the second. The inaccuracy arises due to the approximate
schemes allowing repeat mutation events which generate incompatibilities
without having to invoke recombination events. When the recombination
rate is much lower than the mutation rate this can strongly affect likelihood
approximations. The second interesting feature in this data set is that even
with low mutation (and recombination) rates the frequency of recombination
events on the third sequence at the first site is very low. While the frequency
of recombination events on the other sequences at the first gap (only) is high.
This arises due to the approximation of the probability of the data given a
recombination event at the first site on the third sequence (the resulting
configuration is the diagram in the middle, where grey denotes non ancestral
material). The key term in this calculation is represented pictorially on
the right hand side. The probability of the single sequence given the three
that remain. This is very low using πL&S as every path in the dynamic
programming algorithm requires either a recombination of repeat mutation
to generate the single sequence given the others. Less formally πL&S perceives
the need for an extra mutation or recombination in order to explain the
presence of this sequence given that those three exist in the population.
However, under the full model this sequence can be explained without the
need for further recombination or mutation.
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posal distribution could be used to reduce the variance in the distribution in

the importance weights which would improve the convergence times of the

importance sampler.

Other possible approaches to increasing the scale of inference include

using the genealogies to construct approximate methods of inference. For

example the data could be split into smaller regions, such as in Fearnhead

and Donnelly [38]. The time it would take to properly analyse 50 regions

each with 10 segregating sites in is extremely small compared to the time it

would take to analyse a single data set 500 segregating sites. Alternatively

the weights of the genealogies could be discarded and quantities of interest

could be averaged over the distribution of un-weighted genealogies, which

approximate the true distribution. There are many other possibilities and a

careful analysis into the properties of such methods for specific applications

of interest would be required to assess performance.

In summary: current full likelihood methods are severely restricted in the

size of data sets that they can be used to analyse. However, understanding

the problems with the current methodology could create significant improve-

ments in performance. Also, using these methods to perform approximate

inference could potentially save considerable computing time. Unfortunately

even such improvements and approximations currently seem highly unlikely

to allow full genealogical inference to be applied to modern large scale vari-
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ation data sets. These fully genealogical approaches are most likely to be

useful when only small regions of the genome are under consideration. In

these cases it will normally be necessary to model the recombination process

and genealogical approaches are likely to provide the most accurate inference.
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Chapter 5

Discussion

5.1 Introduction

In this thesis I have discussed various statistical models for genetic data in

the presence of recombination, how these methods can be used for inference

about population parameters and the calculation of likelihoods for a sam-

ple of population genetic data. The focus of this thesis is restricted to two

types of model for genetic variation within a population subject to recom-

bination. The first type of model is based on the notion of ‘copying’ where

new sequences are constructed as imperfect mosaics of preexisting sequences.

The second type of model uses the notion of a genealogy which describes the

ancestry and relationships of the sampled sequences.
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5.2 Using a Product of Approximate Condi-

tionals

Building on the work of Stephens and Donnelly [20] Fearnhead and Donnelly

[21] constructed a copying scheme that was able to mimic the effects of

mutation and recombination. Li and Stephens [22] took this model and

created a faster, simplified version as a direct approach to calculating the

likelihood through the product of these conditional likelihoods for all of the

sequences in the sample.

This approach has been extremely successful due to the small computing

time required to calculate the likelihood under this model. Although the

model was introduced for estimating recombination rates it is much more

flexible than previous methods for approximating the likelihood. Unlike the

use of summary statistics or composite likelihood methods the PAC model

can be directly used for a wide range of applications such as phasing genotype

data [29], simulating population data, elucidating population structure and

imputing missing data. The success of this approach has also led to the

development of even faster algorithms, such as that designed by Stephens and

Scheet [23], although this approach does not use an explicit recombination

parameter, so it is not directly comparable with these approaches.

In this thesis I do not focus on the speed of various PAC approaches but
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on their properties, in particular, their accuracy when estimating a constant

recombination rate. I have compared four alternative models, including two

novel models (πR and πL2) and reported their individual performance as

well as the relative success of each model at estimating the recombination

rate. There is some evidence that improvements can be made with improved

conditional schemes, and perhaps some improvement has been found in the

scheme πL2 . However in the course of the investigation it became apparent

that there existed some fundamental problems with all of the approaches

tried here.

The PAC approach, whilst able to distinguish between various degrees

of recombination, does not provide unbiased recombination rate estimates.

The schemes investigated here all estimate a non-zero recombination rate in

a high percentage of cases where the data were simulated with no recombi-

nation. Also recombination rate estimates are biased downwards when the

recombination rate is very high. These biases are complex in nature and vary

with the number of segregating sites in a region of fixed length, or equiva-

lently, with the average distance between segregating sites. Li and Stephens

provide an empirical bias correction for data with a constant recombination

rate. However, when recombination rates are allowed to vary this correction

may not lead to unbiased estimates.

By examining the schemes in more detail, and by using genealogical ap-
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proaches as a gold standard, it is possible to identify certain features of the

data that are incorrectly interpreted by PAC schemes. As a result a greater

number of mutation or recombination events are sometimes required to ex-

plain the data than in the genealogical case. Similarly PAC models confuse

the signal for recombination with mutation which can result in an under-

estimate of the recombination rate. These effects also make a broad bias

correction term inadequate to provide completely accurate inference - this

only affects the average estimate of the recombination rate.

There have been attempts to improve the choice of orderings used by the

PAC schemes to reduce the effect of spurious recombination signals being

inferred, although no such work has yet been published. Altering the order in

which sequences are considered, or other more severe changes to the schemes

designed to deal with various signals for recombination are not sufficient to

overcome these difficulties. In most cases there will exist no ordering or

sequence sampling scheme which will does not infer unnecessary events when

generating sequences given the others in the sample.

Many of the problems suffered by the copying models of sequence evo-

lution stem from the fact that the true evolutionary process has a complex

structure in which sequences change through time. This induces an ordering

on events that is not reflected in copying processes, as discussed in Chapter

2. The time ordering of events can lead to sequences which, although differ-
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ent to others in the sample, can be explained (on examination of these other

sequences) without inferring further mutation or recombination events. If

a copying approach could be designed which was able to incorporate such

aspects of the ancestry while retaining computational efficiency it might pro-

vide a means of performing much more accurate inference on recombinant

data.

One possible approach to this is to make the following distinctions. Con-

sider a sample of k haplotypes and the probability of observing a k + 1th

haplotype, hk+1, that is distinct from all of the first k at some locus. Then

hk+1 can be viewed as being derived from these k haplotypes with

1. A novel mutation

2. A repeat mutation or recombination

3. No mutations or recombinations.

For examples of these three situations see Figure 5.1. Under the PAC

approach it is impossible to distinguish between situations 2 and 3 in the list

above and this can lead to false signals for recombination. One approach to

distinguishing these situation would be to use estimates of Rmin which try

to count the number of events of type 2 in the sample. The most accurate

method that does not require the simulation of genealogies is the bound Rh

introduced by Myers and Griffiths [34], although more accurate, although
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Figure 5.1: This diagram shows 3 different possibilities that might arise when
calculating the probability of new haplotype, h, given a pre existing set of
sequences (with none the same as H). Haplotype 1 contains a novel mutation,
these are trivial to observe. Haplotype 2 can be explained through a time
ordering effect (that requires no extra mutation) (eg. see Figure 2.10 from
Chapter 2). Haplotype 3 creates an incompatibility in the data that was not
previously present.

computationally intensive, bounds have been proposed by Song and Hein

[44]. This method can also be used to (partially) localise incompatibilities.

When a new sequence is added to the sample, if Rh is increased then this is

evidence for recombination and so recombination should be simulated within

the algorithm. When Rh does not increase this is evidence (but as Rh is

imperfect there is no certainty) that a time ordering effect can explain some

of the differences in the new sequence: so these differences should be treated

in a different way.

Another possible approach would be to construct hybrid haplotypes from

those in the sample representing ancestral individuals that could be ‘copied’

from. This gives a more natural, and therefore potentially more biologically
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meaningful, interpretation of the copying process. Combinatorial approaches

to manufacturing such ancestral sequences have been proposed [45], but much

development is required. Modelling of underlying biological processes and a

statistical approach including the notion of likelihood would be required to

make use of such ideas in this setting. Alternatively, a graph-like approach

with the extant lineages as internal nodes, such as that developed by Fitch in

1977 [46], could be extended with directional edges denoting the direction of

copying and intermediate sequences from which other sequences could copy.

5.3 Genealogical Models

The second major theme of this thesis was to reduce the computational

burden of performing genealogical inference in the presence of recombination.

I describe a new model, the SMC, of ancestry which is based on the coalescent

and which is identical to the coalescent in the absence of recombination

[36]. The SMC produces provides a Markovian structure when simulating

genealogies along a sequence and reduces the overall state space of ARGs.

In this thesis I compare the coalescent and the SMC, both in terms of the

properties of the models, as well as the impact that the simplified structure

of the SMC has on performing inference using importance sampling.

When importance sampling is used to calculate the likelihood of small
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data sets the SMC and the coalescent perform similarly for small amounts of

recombination. When the recombination rate increases there is a systematic

decrease in the average number of recombination events under the SMC which

leads to genealogies being simulated faster and to lower variation in likeli-

hood estimates. Unfortunately this effect starts to become important only

when the recombination rate is high, usually this arises in data so large that

inference under both models is usually very challenging or impossible. Only

in organisms, or genomic regions, where the recombination rate is very high

compared to the mutation rate will this simple use of the SMC provide truly

significant gains in efficiency. Another possibility for improving inference is

that the sequential form of the SMC could be used, perhaps to construct

an MCMC scheme where local genealogies were updated conditional on the

two immediately adjoining trees. This would be a valid approach within the

SMC because of the Markov property when genealogies are viewed along a

sequence. However, it was found to be challenging to correctly condition on

neighbouring genealogies when performing an update.

The importance sampling schemes used here were unable to perform ac-

curate inference on data sets with a large number of segregating sites. Due

to the reduced cost of genotyping it is now common for data to contain

many segregating sites. This limitation makes the impact of improvements

in full likelihood methods questionable. However, there are both theoretical
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and practical reasons why such schemes may be further pursued. Firstly,

note that improving the methods for calculation of approximate likelihoods

has the potential to revolutionise importance sampling. Under the optimal

importance sampler only one genealogy need be simulated to calculate the

likelihood. Using the ideas in Chapter 2 and above in this discussion it

may be possible to provide closer approximations to these optimal condi-

tionals. However, how the performance changes as the importance sampler

approaches the optimal sampler has not been explored here, and is perhaps

an important question.

On a more practical level, approximate methods may be constructed using

full likelihood methods. Composite likelihood approaches (see eg. McVean

et. al. [14] or Fearnhead and Donnelly [38]) use likelihoods constructed from

multiple subsets of segregating sites and combine the results to provide infer-

ence for large regions. These approaches are designed to infer recombination

rates however it may be possible to apply the same approaches to a range of

population genetic questions when recombination is present.

5.4 Summary

Modern genetic data can help to provide account of the history of popu-

lations. Using this we can learn about the biological processes that change
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individual organisms through time. This information can be helpful in under-

standing underlying biological mechanisms that give rise to different pheno-

types, and even disease in human populations. Unfortunately, the processes

that give rise to this data are highly random and the data that we observe

does not readily yield the information that we desire.

Statistical models have the potential to account for random elements,

and to pinpoint quantities of interest within the data. However, designing

accurate models which allow the construction of computationally efficient

algorithms to perform these inferences remains a challenging task. The coa-

lescent with recombination directly models the ancestry of a sample, and so

provides the opportunity to distinguish between different forces and processes

affecting the data. It is also theoretically possible to estimate parameters of

interest, such as the mutation and recombination rates. However performing

efficient inference under the coalescent has proved to be extremely challeng-

ing.

Approximations to the coalescent have provided a compromise between

accuracy and efficiency. While there are currently no models that can truly

claim to have found the perfect balance between simplicity and effectiveness,

there is much evidence for progress. By understanding the shortcomings of

the methods of today it may be possible to design faster and better methods

for understanding the data of tomorrow.
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